Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Dec 5;204(3):783-7.
doi: 10.1016/0022-2836(88)90369-5.

Sulfate-binding protein dislikes protonated oxyacids. A molecular explanation

Affiliations

Sulfate-binding protein dislikes protonated oxyacids. A molecular explanation

B L Jacobson et al. J Mol Biol. .

Abstract

We have determined the effect of pH on the binding affinities of the conjugate bases of four different tetrahedral oxyacids to the sulfate-binding protein. The equilibrium dissociation constants of the binding of sulfate (Kd = 0.12 microM) and selenate (Kd = 5 microM) were found to be pH independent over the range pH 5 to pH 8.1, whereas chromate binding exhibited a pH dependence that is approximately attributable to the pK2 of the chromic acid. Phosphate was bound with an affinity five orders of magnitude weaker than that of sulfate. In light of the highly refined 2 A structure of the complex of the sulfate-binding protein with sulfate, and considering the protonation state and net charge of the various oxyacids, we conclude that the pH dependence of chromate binding and the extremely low affinity of phosphate are attributable mainly to a lack of hydrogen bond acceptors in the binding site. These studies demonstrate that the sulfate-binding site is stringently designed to bind tightly tetrahedral, fully ionized, oxyacid dianions. The presence of a donatable proton on the ligand reduces binding energy by approximately 7 kcal/mol.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources