Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017:978:409-424.
doi: 10.1007/978-3-319-53889-1_21.

Epigenome Editing in the Brain

Affiliations
Review

Epigenome Editing in the Brain

Pavel Bashtrykov et al. Adv Exp Med Biol. 2017.

Abstract

Epigenome editing aims for an introduction or removal of chromatin marks at a defined genomic region using artificial EpiEffectors resulting in a modulation of the activity of the targeted functional DNA elements. Rationally designed EpiEffectors consist of a targeting DNA-binding module (such as a zinc finger protein, TAL effector, or CRISPR/Cas complex) and usually, but not exclusively, a catalytic domain of a chromatin-modifying enzyme. Epigenome editing opens a completely new strategy for basic research of the central nervous system and causal treatment of psychiatric and neurological diseases, because rewriting of epigenetic information can lead to the direct and durable control of the expression of disease-associated genes. Here, we review current advances in the design of locus- and allele-specific DNA-binding modules, approaches for spatial, and temporal control of EpiEffectors and discuss some examples of existing and propose new potential therapeutic strategies based on epigenome editing for treatment of neurodegenerative and psychiatric diseases. These include the targeted silencing of disease-associated genes or activation of neuroprotective genes which may be applied in Alzheimer's and Parkinson's diseases or the control of addiction and depression. Moreover, we discuss allele-specific epigenome editing as novel therapeutic approach for imprinting disorders, Huntington's disease and Rett syndrome.

Keywords: Alzheimer’s disease; CRISPR/Cas; Chromatin modification; DNA methylation; Epigenome editing; Genome targeting; Huntington’s disease; Imprinting disorder; Parkinson’s disease; Rett syndrome.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources