MSG effects on beta-endorphin and alpha-MSH in the hypothalamus and caudal medulla
- PMID: 2852357
- DOI: 10.1016/0196-9781(88)90108-8
MSG effects on beta-endorphin and alpha-MSH in the hypothalamus and caudal medulla
Abstract
Monosodium glutamate (MSG) was given to neonatal male rats to determine its effects on neurons containing beta-endorphin (beta-END) and alpha-melanocyte stimulating hormone (alpha-MSH) within the basal hypothalamus (arcuate nucleus) and caudal medulla [nucleus tractus solitarius (NTS)] and on the levels of beta-END and alpha-MSH within these areas. Immunocytochemical studies demonstrated a reduction in the number of cells within the medial hypothalamic area (arcuate nucleus) among MSG-treated animals versus saline controls. MSG did not reduce the number of cell bodies within the caudal medulla (NTS). MSG significantly reduced beta-END and alpha-MSH immunoreactive levels in the basal hypothalamus as determined by radioimmunoassay. Whereas a significant reduction in the level of beta-END occurred in the ventral caudal medulla (VCM), none occurred in the dorsal caudal medulla (DCM). In contrast, levels of alpha-MSH increased significantly in the DCM among animals receiving MSG compared to control animals. This study documents the contribution of beta-endorphin containing neurons of the basal hypothalamus to areas of the caudal medulla. The effect of MSG on beta-endorphin and alpha-MSH neurons in these areas and their differential effects on levels in the caudal medulla areas raises questions about the sites of origin of these peptides.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources

