Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep 5:337:198-207.
doi: 10.1016/j.jhazmat.2017.05.009. Epub 2017 May 8.

Differential sulphur assimilation mechanism regulates response of Arabidopsis thaliana natural variation towards arsenic stress under limiting sulphur condition

Affiliations

Differential sulphur assimilation mechanism regulates response of Arabidopsis thaliana natural variation towards arsenic stress under limiting sulphur condition

Ria Khare et al. J Hazard Mater. .

Abstract

Arsenic (As) is a ubiquitous element, which imposes threat to crops productivity and human health through contaminated food chain. As a part of detoxification mechanism, As is chelated and sequestered into the vacuoles via sulphur containing compounds glutathione (GSH) and phytochelatins (PCs). Under limiting sulphur (LS) conditions, exposure of As leads to enhanced toxic effects in plants. Therefore, it is a prerequisite to understand molecular mechanisms involved in As stress response under sulphur deficiency conditions in plants. In recent years, natural variation has been utilized to explore the genetic determinants linked to plant development and stress response. In this study, natural variation in Arabidopsis has been utilized to understand the molecular mechanisms underlying LS and As(III) stress response. Analysis of different accession of Arabidopsis led to the identification of Koz2-2 and Ri-0 as the most tolerant and sensitive accessions, respectively, towards As(III) and LS+As(III) stress. Biochemical analysis and expression profiling of the genes responsible for sulphur transport and assimilation as well as metal detoxification and accumulation revealed significantly enhanced sulphur assimilation mechanism in Koz2-2 as compared to Ri-0. Analyses suggest that genetic variation regulates differential response of accessions towards As(III) under LS condition.

Keywords: Accumulation; Arabidopsis; Arsenic; Detoxification; Natural variation; Sulphur homeostasis.

PubMed Disclaimer

LinkOut - more resources