Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct:103:409-414.
doi: 10.1016/j.ijbiomac.2017.05.063. Epub 2017 May 16.

Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria

Affiliations

Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria

M Sotelo-Boyás et al. Int J Biol Macromol. 2017 Oct.

Abstract

The antibacterial property of thyme essential oil due to different volatile compounds, has been well documented in the literature. To overcome the high volatility of essential oil components, encapsulation has emerged as a new alternative. In this work, chitosan and thyme essential oil-loaded chitosan nanoparticles (TEO-CSNPs) and nanocapsules (TEO-CSNCs) were prepared by nanoprecipitation and nanoencapsulation, respectively. The morphology, encapsulation efficiency, release kinetics, and inhibitory activity were evaluated. Average size of nanocapsules (9.1±1.6nm) was slightly higher than nanoparticles (6.4±0.5nm). The percentage encapsulation of thymol and carvacrol, more than 68%, was similar for nanoparticles and nanocapsules. However, thymol and carvacrol release time from TEO-CSNPs was faster compared to TEO-CSNCs. The release kinetics data were fitted to three analytical kinetic models with no statistical differences among them. The inhibitory activity was higher for nanoparticles than for nanocapsules when tested against six foodborne bacteria. The inhibitory effect of TEO-CSNPs was the highest against Staphylococcus aureus (inhibition halo 4.3cm) and for TEO-CSNCs it was against Bacillus cereus (inhibition halo 1.9cm).

Keywords: Antibacterial properties; Bioactive compound; Delivery system; Encapsulation efficiency; Kinetics; Nanostructures.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources