Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug:215:48-58.
doi: 10.1016/j.jplph.2017.05.002. Epub 2017 May 4.

The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis

Affiliations

The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis

Chao Du et al. J Plant Physiol. 2017 Aug.

Abstract

Reaumuria trigyna (R. trigyna) is an endangered small shrub endemic to the Eastern Alxa-Western Ordos area in Inner Mongolia, China. Based on R. trigyna transcriptome data, the Group I WRKY transcription factor gene RtWRKY1 was cloned from R. trigyna. The full-length RtWRKY1 gene was 2100bp, including a 1261-bp open reading frame (ORF) encoding 573 amino acids. RtWRKY1 was mainly expressed in the stem and was induced by salt, cold stress, and ABA treatment. Overexpression of RtWRKY1 in Arabidopsis significantly enhanced the chlorophyll content, root length, and fresh weight of the transgenic lines under salt stress. RtWRKY1 transgenic Arabidopsis exhibited higher proline content, GSH-PX, POD, SOD, and CAT activities, and lower MDA content, Na+ content, and Na+/K+ ratio than wild-type Arabidopsis under salt stress conditions. Salt stress affected the expression of ion transport, proline biosynthesis, and antioxidant related genes, including AtAPX1, AtCAT1, AtSOD1, AtP5CS1, AtP5CS2, AtPRODH1, AtPRODH2, and AtSOS1 in transgenic lines. RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis by regulating plant growth, osmotic balance, Na+/K+ homeostasis, and the antioxidant system.

Keywords: Antioxidant system; Osmoregulation; Reaumuria trigyna; Salt stress; Transgenic Arabidopsis; WRKY transcription factors.

PubMed Disclaimer

MeSH terms

LinkOut - more resources