Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jul:56:100-107.
doi: 10.1016/j.gaitpost.2017.05.003. Epub 2017 May 13.

Potential contributions of skeletal muscle contractile dysfunction to altered biomechanics in obesity

Affiliations
Review

Potential contributions of skeletal muscle contractile dysfunction to altered biomechanics in obesity

Lance M Bollinger. Gait Posture. 2017 Jul.

Abstract

Obesity alters whole body kinematics and joint kinetics during activities of daily living which are thought to contribute to increased risk of musculoskeletal injury, development of lower extremity joint osteoarthritis (OA), and physical disability. To date, it has widely been accepted that excess adipose tissue mass is the major driver of biomechanical alterations in obesity. However, it is well established that obesity is a systemic disease affecting numerous, if not all, organ systems of the body. Indeed, obesity elicits numerous adaptations within skeletal muscle, including alterations in muscle structure (ex. myofiber size, architecture, lipid accumulation, and fiber type), recruitment patterns, and contractile function (ex. force production, power production, and fatigue) which may influence kinematics and joint kinetics. This review discusses the specific adaptations of skeletal muscle to obesity, potential mechanisms underlying these adaptations, and how these adaptations may affect biomechanics.

Keywords: Fatigue; Muscle mass; Power; Specific force; Strength.

PubMed Disclaimer

LinkOut - more resources