Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep:182:656-664.
doi: 10.1016/j.chemosphere.2017.05.071. Epub 2017 May 12.

Rapid screening and identification of chemical hazards in surface and drinking water using high resolution mass spectrometry and a case-control filter

Affiliations

Rapid screening and identification of chemical hazards in surface and drinking water using high resolution mass spectrometry and a case-control filter

Sarit L Kaserzon et al. Chemosphere. 2017 Sep.

Abstract

Access to clean, safe drinking water poses a serious challenge to regulators, and requires analytical strategies capable of rapid screening and identification of potentially hazardous chemicals, specifically in situations when threats to water quality or security require rapid investigations and potential response. This study describes a fast and efficient chemical hazard screening strategy for characterising trace levels of polar organic contaminants in water matrices, based on liquid chromatography high resolution mass spectrometry with post-acquisition 'case-control' data processing. This method allowed for a rapid response time of less than 24 h for the screening of target, suspect and non-target unknown chemicals via direct injection analysis, and a second, more sensitive analysis option requiring sample pre-concentration. The method was validated by fortifying samples with a range of pesticides, pharmaceuticals and personal care products (n = 46); with >90% of target compounds positively screened in samples at 1 ng mL-1, and 46% at 0.1 ng mL-1 when analysed via direct injection. To simulate a contamination event samples were fortified with compounds not present in the commercial library (designated 'non-target compounds'; fipronil and fenitrothion), tentatively identified at 0.2 and 1 ng mL-1, respectively; and a compound not included in any known commercial library or public database (designated 'unknown' compounds; 8Cl- perfluorooctanesulfonic acid), at 0.8 ng mL-1. The method was applied to two 'real-case' scenarios: (1) the assessment of drinking water safety during a high-profile event in Brisbane, Australia; and (2) to screen treated, re-circulated drinking water and pre-treated (raw) water. The validated workflow was effective for rapid prioritisation and screening of suspect and non-target potential hazards at trace levels, and could be applied to a wide range of matrices and investigations where comparison of organic contaminants between an affected and control site and or timeframe is warranted.

Keywords: Data reduction strategy; Hazard identification; LC-QTOF; Suspect screening; Water monitoring.

PubMed Disclaimer

MeSH terms

LinkOut - more resources