Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 1:77:642-648.
doi: 10.1016/j.msec.2017.03.285. Epub 2017 Apr 2.

Can PEI microgels become biocompatible upon betainization?

Affiliations

Can PEI microgels become biocompatible upon betainization?

Nurettin Sahiner et al. Mater Sci Eng C Mater Biol Appl. .

Abstract

Polyethylene imine (PEI) microgels prepared via micro emulsion polymerization technique were treated with 1,3-propane sultone to obtained betainized PEI (b-PEI) microgels. The betainization reaction generated zwitterions on PEI microgel that are positive charges from quarternized amine groups of PEI, and the newly formed negative charges from SO3- groups from the modifying agent, 1,3-propane sultone offered interesting properties. The smaller size of b-PEI microgels that are obtained by simple filtration were increased with betainization from 512±14 to 1114±86nm. Also, the betainization of PEI microgel provided negative zeta potential values at high pH values as 9, 10, 11, and 12. Moreover, the b-PEI microgels render more effective dye absorption capabilities for anionic or cationic organic dyes such as Methyl Orange (MO) and Methylene Blue (MB) separately with the significant increase dye adsorption capacity of 354±31 and 274±19mg/g respectively. Moreover, antibacterial properties of b-PEI microgels tested on the E. coli ATCC 8739 and S. aureus ATCC 6538 were diminished whereas bare PEI has low MIC and MBC values (strong antibacterial properties). Interestingly, the PEI microgels known for their strong antibacterial and toxic nature found to be biocompatible upon betainization reaction. The biocompatibility test were carried with WST-1 tests and double staining methods. The cytotoxicity, apoptotic and necrotic cell tests were shown that PEI microgels induce no cytotoxicity up to 400μg/mL whereas PEI microgels possessed 50% toxicity at this concentration, suggesting that b-PEI microgels become biocompatible upon betainization with, 3-propane sultone.

Keywords: Betainized PEI microgel/nanogel; Biocompatible PEI microgel/nanogel; PEI microgel/nanogels; Polybetaine microgel/nanogel.

PubMed Disclaimer

LinkOut - more resources