Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles
- PMID: 28540164
- PMCID: PMC5430883
- DOI: 10.1016/j.apsb.2016.09.005
Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles
Abstract
Oral drug absorption is a process influenced by the physicochemical and biopharmaceutical properties of the drug and its inter-relationship with the gastrointestinal tract. Drug solubility, dissolution and permeability across intestinal barrier are the key parameters controlling absorption. This review provides an overview of the factors that affect drug absorption and the classification of a drug on the basis of solubility and permeability. The biopharmaceutical classification system (BCS) was introduced in early 90׳s and is a regulatory tool used to predict bioavailability problems associated with a new entity, thereby helping in the development of a drug product. Strategies to combat solubility and permeability issues are also discussed.
Keywords: ABC, ATP-binding cassette; AP, absorption potential; API, active pharmaceutical ingredient; ATP, adenosine triphosphate; AZT, azidothymidine; BA/BE, bioavailability/bioequivalence; BCRP, breast cancer resistance protein; BCS; BCS, biopharmaceutical classification system; BDDS, biopharmaceutical drug disposition system; BSP, bromosulfophthalein; CD, cyclodextrin; CDER, Centre for Drug Evaluation and Research; CNT, Na+-dependent concentrative transporter; CNT, concentrative nucleoside transporter; CYP, cytochrome P450; D:S, dose:solubility; E217G, estradiol 17β-glucuronide; EMEA, European Medicines Agency; ENT, equilibrative nucleoside transporter; FATP, fatty acid transporter protein; FDA, U.S. Food and Drug Administration; FIP, International Pharmaceutical Federation; FaSSIF, fasted state simulated intestinal fluid; Factors affecting absorption; FeSSIF, fed state simulated intestinal fluid; Formulation strategies; GIS, gastrointestinal simulator; GIT, gastrointestinal tract; GITA, gastrointestinal transit and absorption; GLUT, sodium-independent facilitated diffusion transporter; GRAS, generally recognized as safe; HIV, human immunodeficiency disease; HPC-SL, LBDDS, lipid based drug delivery system; HUGO, Human Genome Organization; ICH, International Council of Harmonization; IDR, intrinsic dissolution rate; IR, immediate release; ISBT, sodium dependent bile salt transporter; MCT, monocarboxylate transporter; MPP, 1-methyl-4-phenylpyridinium; MRP, multidrug resistance associated protein; NLC, nanostructured lipid carrier; NME, new molecular entity; NTCP, sodium-dependent taurocholate co-transporting polypeptide; OAT, organic anion transporter; OATP, organic anion transporting polypeptide; OCT, organic cationic transporter; OCTN, organic cationic/carnitine transporter; OMM, ordered mesoporous material; P-gp, P-glycoprotein; PAH, p-aminohippurate; PAMPA, parallel artificial membrane permeability assay; PEG, polyethylene glycol; PEI, polyethyleneimine; PEPT, peptide transporter; PGA, polyglycolic acid; PLA, poly(lactic acid); PLGA, poly-d,l-lactide-co-glycoside; PMAT, plasma membrane monoamine transport; PSA, polar surface area; PVDF, polyvinylidene difluoride; Papp, apparent permeability; Peff, effective permeability; Permeability; Psi, porous silicon; RFC, reduced folate transporter; SDS, sodium dodecyl sulphate; SGLT, sodium dependent secondary active transporter; SIF, simulated intestinal fluid; SLC, solute carrier; SLCO, solute carrier organic anion; SLN, solid lipid nanoparticles; SMVT, sodium dependent multivitamin transporter; SPIP, single pass intestinal perfusion; SUPAC, scale-up and post approval changes; SVCT, sodium-dependent vitamin C transporter; Solubility; TEOS, tetraethylortho silicate; UWL, unstirred water layer; VDAD, volume to dissolve applied dose; WHO, World Health Organization; pMMA, polymethyl methacrylate; vit. E TPGS, vitamin E tocopherol polyethylene glycol succinate.
Figures
Similar articles
-
In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.Eur J Pharm Sci. 2013 Jul 16;49(4):679-98. doi: 10.1016/j.ejps.2013.05.019. Epub 2013 May 29. Eur J Pharm Sci. 2013. PMID: 23727464
-
Pharmacokinetic aspects and in vitro-in vivo correlation potential for lipid-based formulations.Acta Pharm Sin B. 2014 Oct;4(5):333-49. doi: 10.1016/j.apsb.2014.09.001. Epub 2014 Oct 8. Acta Pharm Sin B. 2014. PMID: 26579403 Free PMC article. Review.
-
The influence of the gut microbiota on the bioavailability of oral drugs.Acta Pharm Sin B. 2021 Jul;11(7):1789-1812. doi: 10.1016/j.apsb.2020.09.013. Epub 2020 Sep 28. Acta Pharm Sin B. 2021. PMID: 34386321 Free PMC article. Review.
-
Xenobiotic, bile acid, and cholesterol transporters: function and regulation.Pharmacol Rev. 2010 Mar;62(1):1-96. doi: 10.1124/pr.109.002014. Epub 2010 Jan 26. Pharmacol Rev. 2010. PMID: 20103563 Free PMC article. Review.
-
Biopharmaceutical classification of poorly soluble drugs with respect to "enabling formulations".Eur J Pharm Sci. 2013 Sep 27;50(1):8-16. doi: 10.1016/j.ejps.2013.04.002. Epub 2013 Apr 11. Eur J Pharm Sci. 2013. PMID: 23583787 Review.
Cited by
-
Fast-Fed Variability: Insights into Drug Delivery, Molecular Manifestations, and Regulatory Aspects.Pharmaceutics. 2022 Aug 27;14(9):1807. doi: 10.3390/pharmaceutics14091807. Pharmaceutics. 2022. PMID: 36145555 Free PMC article. Review.
-
Taurine Alleviates Streptococcus uberis-Induced Inflammation by Activating Autophagy in Mammary Epithelial Cells.Front Immunol. 2021 Mar 12;12:631113. doi: 10.3389/fimmu.2021.631113. eCollection 2021. Front Immunol. 2021. PMID: 33777017 Free PMC article.
-
Recent Advances in Oral Nano-Antibiotics for Bacterial Infection Therapy.Int J Nanomedicine. 2020 Dec 1;15:9587-9610. doi: 10.2147/IJN.S279652. eCollection 2020. Int J Nanomedicine. 2020. PMID: 33293809 Free PMC article. Review.
-
Enhanced Solubility, Permeability and Anticancer Activity of Vorinostat Using Tailored Mesoporous Silica Nanoparticles.Pharmaceutics. 2018 Dec 17;10(4):283. doi: 10.3390/pharmaceutics10040283. Pharmaceutics. 2018. PMID: 30562958 Free PMC article.
-
Exploring the utility of the Chasing Principle: influence of drug-free SNEDDS composition on solubilization of carvedilol, cinnarizine and R3040 in aqueous suspension.Acta Pharm Sin B. 2019 Jan;9(1):194-201. doi: 10.1016/j.apsb.2018.07.004. Epub 2018 Jul 7. Acta Pharm Sin B. 2019. PMID: 30766791 Free PMC article.
References
-
- Bergström C.A., Holm R., Jørgensen S.A., Andersson S.B., Artursson P., Beato S. Early pharmaceutical profiling to predict oral drug absorption: current status and unmet needs. Eur J Pharm Sci. 2014;57:173–199. - PubMed
-
- Dokoumetzidis A., Macheras P. A century of dissolution research: from noyes and whitney to the biopharmaceutics classification system. Int J Pharm. 2006;321:1–11. - PubMed
-
- Noyes A.A., Whitney W.R. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19:930–934.
-
- Brünner E. Reaktionsgeschwindigkeit in heterogen systemen. Z Phys Chem. 1904;47:56–102.
-
- Hixson A.W., Crowell J.H. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;23:923–931.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous