Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2018 Feb;222(2).
doi: 10.1111/apha.12898. Epub 2017 Jun 21.

Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting redox interindividual variability

Affiliations
Clinical Trial

Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting redox interindividual variability

N V Margaritelis et al. Acta Physiol (Oxf). 2018 Feb.

Abstract

Aim: The aim of this study was to reveal the role of reactive oxygen and nitrogen species (RONS) in exercise adaptations under physiological in vivo conditions and without the interference from other exogenous redox agents (e.g. a pro-oxidant or antioxidant).

Methods: We invented a novel methodological set-up that exploited the large redox interindividual variability in exercise responses. More specifically, we used exercise-induced oxidative stress as the 'classifier' measure (i.e. low, moderate and high) and investigated the physiological and redox adaptations after a 6-week endurance training protocol.

Results: We demonstrated that the group with the low exercise-induced oxidative stress exhibited the lowest improvements in a battery of classic adaptations to endurance training (VO2 max, time trial and Wingate test) as well as in a set of redox biomarkers (oxidative stress biomarkers and antioxidants), compared to the high and moderate oxidative stress groups.

Conclusion: The findings of this study substantiate, for the first time in a human in vivo physiological context, and in the absence of any exogenous redox manipulation, the vital role of RONS produced during exercise in adaptations. The stratification approach, based on a redox phenotype, implemented in this study could be a useful experimental strategy to reveal the role of RONS and antioxidants in other biological manifestations as well.

Keywords: antioxidants; exercise adaptations; free radicals; oxidative stress; trainability; variability.

PubMed Disclaimer

Comment in

Publication types

Substances