Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug:58:113-121.
doi: 10.1016/j.actbio.2017.05.010. Epub 2017 May 22.

Tissue-engineered trachea regeneration using decellularized trachea matrix treated with laser micropore technique

Affiliations

Tissue-engineered trachea regeneration using decellularized trachea matrix treated with laser micropore technique

Yong Xu et al. Acta Biomater. 2017 Aug.

Abstract

Tissue-engineered trachea provides a promising approach for reconstruction of long segmental tracheal defects. However, a lack of ideal biodegradable scaffolds greatly restricts its clinical translation. Decellularized trachea matrix (DTM) is considered a proper scaffold for trachea cartilage regeneration owing to natural tubular structure, cartilage matrix components, and biodegradability. However, cell residual and low porosity of DTM easily result in immunogenicity and incomplete cartilage regeneration. To address these problems, a laser micropore technique (LMT) was applied in the current study to modify trachea sample porosity to facilitate decellular treatment and cell ingrowth. Decellularization processing demonstrated that cells in LMT treated samples were more easily removed compared with untreated native trachea. Furthermore, after optimizing the protocols of LMT and decellular treatments, the LMT-treated DTM (LDTM) could retain their original tubular shape with only mild extracellular matrix damage. After seeding with chondrocytes and culture in vitro for 8 weeks, the cell-LDTM constructs formed tubular cartilage with relatively homogenous cell distribution in both micropores and bilateral surfaces. In vivo results further confirmed that the constructs could form mature tubular cartilage with increased DNA and cartilage matrix contents, as well as enhanced mechanical strength, compared with native trachea. Collectively, these results indicate that LDTM is an ideal scaffold for tubular cartilage regeneration and, thus, provides a promising strategy for functional reconstruction of trachea cartilage.

Statement of significance: Lacking ideal biodegradable scaffolds greatly restricts development of tissue-engineered trachea. Decellularized trachea matrix (DTM) is considered a proper scaffold for trachea cartilage regeneration. However, cell residual and low porosity of DTM easily result in immunogenicity and incomplete cartilage regeneration. By laser micropore technique (LMT), the current study efficiently enhanced the porosity and decellularized efficacy of DTM. The LMT-treated DTM basically retained the original tubular shape with mild matrix damage. After chondrocyte seeding followed by in vitro culture and in vivo implantation, the constructs formed mature tubular cartilage with matrix content and mechanical strength similar to native trachea. The current study provides an ideal scaffold and a promising strategy for cartilage regeneration and functional reconstruction of trachea.

Keywords: Cartilage; Decellularized matrix; Laser micropore technique; Tissue-engineered trachea.

PubMed Disclaimer

Publication types

LinkOut - more resources