Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 May 10:12:1385-1393.
doi: 10.2147/COPD.S134161. eCollection 2017.

Genetic polymorphism and chronic obstructive pulmonary disease

Affiliations
Review

Genetic polymorphism and chronic obstructive pulmonary disease

Cunhua Yuan et al. Int J Chron Obstruct Pulmon Dis. .

Abstract

Chronic obstructive pulmonary disease (COPD) is a common chronic disease, and its morbidity and mortality are increasing. There are many studies that have tried to explain the pathogenesis of COPD from genetic susceptibility, to identify the susceptibility of COPD factors, which play a role in early prevention, early detection and the early treatment. However, it is well known that COPD is an inflammatory disease characterized by incomplete reversible airflow limitation in which genes interact with the environment. In recent years, many studies have proved gene polymorphisms and COPD correlation. However, there is less research on the relationship between COPD and genome-wide association study (GWAS), epigenetics and apoptosis. In this paper, we summarized the correlation between gene level and COPD from the following four aspects: the GWAS, the gene polymorphism, the epigenetics and the apoptosis, and the relationship between COPD and gene is summarized comprehensively.

Keywords: COPD; chronic obstructive pulmonary disease; genetic polymorphism; genome-wide association study.

PubMed Disclaimer

Conflict of interest statement

Disclosure The authors report no conflicts of interest in this work.

Similar articles

Cited by

References

    1. Boueiz A, Lutz SM, Cho MH, et al. Genome-wide association study of the genetic determinants of emphysema distribution. Am J Respir Crit Care Med. 2017;195(6):757–771. - PMC - PubMed
    1. Manichaikul A, Hoffman EA, Smolonska J, et al. Genome-wide study of percent emphysema on computed tomography in the general population. The Multi-Ethnic Study of Atherosclerosis Lung/SNP Health Association Resource Study. Am J Respir Crit Care Med. 2014;189(4):408–418. - PMC - PubMed
    1. Wain LV, Shrine N, Miller S, et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir Med. 2015;3(10):769–781. - PMC - PubMed
    1. Wain LV, Shrine N, Artigas MS, et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet. 2017;49(3):416–425. - PMC - PubMed
    1. Udomsinprasert R, Pongjaroenkit S, Wongsantichon J, et al. Identification, characterization and structure of a new Delta class glutathione transferase isoenzyme. Biochem J. 2005;388(Pt 3):763–771. - PMC - PubMed

MeSH terms

Substances