Recent Progress in Energy-Driven Water Splitting
- PMID: 28546906
- PMCID: PMC5441509
- DOI: 10.1002/advs.201600337
Recent Progress in Energy-Driven Water Splitting
Abstract
Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.
Keywords: electrochemical water splitting; hydrogen generation; photocatalytic water splitting; photoelectrochemical water splitting; solar water splitting.
Figures















Similar articles
-
Water Splitting: From Electrode to Green Energy System.Nanomicro Lett. 2020 Jun 17;12(1):131. doi: 10.1007/s40820-020-00469-3. Nanomicro Lett. 2020. PMID: 34138146 Free PMC article. Review.
-
Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting.Nanomicro Lett. 2024 Jul 5;16(1):237. doi: 10.1007/s40820-024-01424-2. Nanomicro Lett. 2024. PMID: 38967856 Free PMC article. Review.
-
Solar Hydrogen Production and Storage in Solid Form: Prospects for Materials and Methods.Nanomaterials (Basel). 2024 Sep 27;14(19):1560. doi: 10.3390/nano14191560. Nanomaterials (Basel). 2024. PMID: 39404287 Free PMC article. Review.
-
Hydrogen production technologies - Membrane based separation, storage and challenges.J Environ Manage. 2022 Jan 15;302(Pt A):113963. doi: 10.1016/j.jenvman.2021.113963. Epub 2021 Oct 23. J Environ Manage. 2022. PMID: 34700079 Review.
-
Noble metal-free hydrogen evolution catalysts for water splitting.Chem Soc Rev. 2015 Aug 7;44(15):5148-80. doi: 10.1039/c4cs00448e. Epub 2015 Apr 17. Chem Soc Rev. 2015. PMID: 25886650 Review.
Cited by
-
Effects of Structure and Constituent of Prussian Blue Analogs on Their Application in Oxygen Evolution Reaction.Molecules. 2020 May 14;25(10):2304. doi: 10.3390/molecules25102304. Molecules. 2020. PMID: 32422929 Free PMC article. Review.
-
Nanoenabled Photothermal Materials for Clean Water Production.Glob Chall. 2020 Oct 14;5(1):2000055. doi: 10.1002/gch2.202000055. eCollection 2021 Jan. Glob Chall. 2020. PMID: 33437524 Free PMC article. Review.
-
Intermediate Sr2Co1.5Fe0.5O6-δ Tetragonal Structure between Perovskite and Brownmillerite as a Model Catalyst with Layered Oxygen Deficiency for Enhanced Electrochemical Water Oxidation.ACS Catal. 2021;11(7):10.1021/acscatal.1c00465. doi: 10.1021/acscatal.1c00465. ACS Catal. 2021. PMID: 38846030 Free PMC article.
-
Water Splitting: From Electrode to Green Energy System.Nanomicro Lett. 2020 Jun 17;12(1):131. doi: 10.1007/s40820-020-00469-3. Nanomicro Lett. 2020. PMID: 34138146 Free PMC article. Review.
-
Scaling Up Electrodes for Photoelectrochemical Water Splitting: Fabrication Process and Performance of 40 cm2 LaTiO2 N Photoanodes.ChemSusChem. 2019 May 8;12(9):1931-1938. doi: 10.1002/cssc.201802645. Epub 2019 Jan 30. ChemSusChem. 2019. PMID: 30600935 Free PMC article.
References
-
- Christopher K., Dimitrios R., Energy Environ. Sci. 2012, 5, 6640.
-
- Azwar M. Y., Hussain M. A., Abdul‐Wahab A. K., Renew. Sustainable Energy Rev. 2014, 31, 158.
-
- Steinfeld A., Sol. Energy 2005, 78, 603.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials