Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017;7(1):49-57.
doi: 10.15171/bi.2017.07. Epub 2017 Feb 20.

Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors

Affiliations
Review

Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors

Marziyeh Fathi et al. Bioimpacts. 2017.

Abstract

Introduction: Polymeric nanoparticles (NPs) formulated using biodegradable polymers offer great potential for development of de novo drug delivery systems (DDSs) capable of delivering a wide range of bioactive agents. They can be engineered as advanced multifunctional nanosystems (NSs) for simultaneous imaging and therapy known as theranostics or diapeutics. Methods: A brief prospective is provided on biomedical importance and applications of biodegradable polymeric NSs through reviewing the recently published literature. Results: Biodegradable polymeric NPs present unique characteristics, including: nanoscaled structures, high encapsulation capacity, biocompatibility with non-thrombogenic and non-immunogenic properties, and controlled-/sustained-release profile for lipophilic and hydrophilic drugs. Once administered in vivo, all classes of biodegradable polymers (i.e., synthetic, semi-synthetic, and natural polymers) are subjected to enzymatic degradation; and hence, transformation into byproducts that can be simply eliminated from the human body. Natural and semi-synthetic polymers have been shown to be highly stable, much safer, and offer a non-/less-toxic means for specific delivery of cargo drugs in comparison with synthetic polymers. Despite being biocompatible and enzymatically-degradable, there are some drawbacks associated with these polymers such as batch to batch variation, high production cost, structural complexity, lower bioadhesive potential, uncontrolled rate of hydration, and possibility of microbial spoilage. These pitfalls have bolded the importance of synthetic counterparts despite their somewhat toxicity. Conclusion: Taken all, to minimize the inadvertent effects of these polymers and to engineer much safer NSs, it is necessary to devise biopolymers with desirable chemical and biochemical modification(s) and polyelectrolyte complex formation to improve their drug delivery capacity in vivo.

Keywords: Advanced drug delivery systems; Biodegradable polymers; Natural polymers; Synthetic and semi-synthetic polymers; Targeted therapy.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Fig. 2
Fig. 2

Similar articles

Cited by

References

    1. Kafil V, Omidi Y. Cytotoxic impacts of linear and branched polyethylenimine nanostructures in a431 cells. Bioimpacts. 2011;1:23–30. doi: 10.5681/bi.2011.004. - DOI - PMC - PubMed
    1. Omidi Y, Barar J, Heidari HR, Ahmadian S, Yazdi HA, Akhtar S. Microarray analysis of the toxicogenomics and the genotoxic potential of a cationic lipid-based gene delivery nanosystem in human alveolar epithelial a549 cells. Toxicol Mech Methods. 2008;18:369–78. doi: 10.1080/15376510801891286. - DOI - PubMed
    1. Hollins AJ, Omidi Y, Benter IF, Akhtar S. Toxicogenomics of drug delivery systems: Exploiting delivery system-induced changes in target gene expression to enhance siRNA activity. J Drug Target. 2007;15:83–8. doi: 10.1080/10611860601151860. - DOI - PubMed
    1. Omidi Y, Hollins AJ, Benboubetra M, Drayton R, Benter IF, Akhtar S. Toxicogenomics of non-viral vectors for gene therapy: a microarray study of lipofectin- and oligofectamine-induced gene expression changes in human epithelial cells. J Drug Target. 2003;11:311–23. doi: 10.1080/10611860310001636908. - DOI - PubMed
    1. Duncan R. Polymer therapeutics: Top 10 selling pharmaceuticals - what next? J Control Release. 2014;190:371–80. doi: 10.1016/j.jconrel.2014.05.001. - DOI - PubMed