Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar;131(1):137-144.
doi: 10.1007/s00442-002-0874-z. Epub 2002 Mar 1.

Arboreal ants as key predators in tropical lowland rainforest trees

Affiliations

Arboreal ants as key predators in tropical lowland rainforest trees

Andreas Floren et al. Oecologia. 2002 Mar.

Abstract

Ants numerically dominate the canopy fauna of tropical lowland rain forests. They are considered to be key predators but their effects in this regard have only rarely been studied on non-myrmecophytes. A conspicuously low abundance of less mobile, mainly holometabolous arthropods like Lepidoptera larvae corresponds with ant dominance, while hemimetabolous highly mobile nymphs occur regularly and in large numbers in the trees. This is in contrast to the temperate regions where ants are mostly lacking on trees and holometabolous larvae are frequent. In this study we experimentally measured ant predation in the trees by offering caterpillars as baits. Fifty-four ant species were tested, of which 46 killed caterpillars and carried them away to their nests while only eight species ignored the offered larvae. Insecticidal knockdown fogging of ten trees after finishing the prey experiments showed that on average 85% of ant individuals per tree were predacious. With the analysis of another 69 foggings and meticulous observations in many other trees this suggests that arboreal ants are responsible for the low abundance of less mobile arthropods in tropical lowland rain forest canopies. Ant predation was significantly lower in a disturbed forest indicating that human disturbance induces a change in the functional interactions in these ecosystems.

Keywords: Anthropogenic disturbance; Canopy; Community structure; Ecosystem function; Fogging.

PubMed Disclaimer

LinkOut - more resources