Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Apr 17;2(2):163-194.
doi: 10.3390/biomedicines2020163.

Tumor Restrictions to Oncolytic Virus

Affiliations
Review

Tumor Restrictions to Oncolytic Virus

Markus Vähä-Koskela et al. Biomedicines. .

Abstract

Oncolytic virotherapy has advanced since the days of its conception but therapeutic efficacy in the clinics does not seem to reach the same level as in animal models. One reason is premature oncolytic virus clearance in humans, which is a reasonable assumption considering the immune-stimulating nature of the oncolytic agents. However, several studies are beginning to reveal layers of restriction to oncolytic virotherapy that are present before an adaptive neutralizing immune response. Some of these barriers are present constitutively halting infection before it even begins, whereas others are raised by minute cues triggered by virus infection. Indeed, we and others have noticed that delivering viruses to tumors may not be the biggest obstacle to successful therapy, but instead the physical make-up of the tumor and its capacity to mount antiviral defenses seem to be the most important efficacy determinants. In this review, we summarize the constitutive and innate barriers to oncolytic virotherapy and discuss strategies to overcome them.

Keywords: antiviral defenses; extracellular matrix; interferon; oncolytic virus; tight junctions; tumor stroma.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Tumor stroma blocks virus spread within tumors. A representative section of human A2058 melanoma xenografts stained with polyclonal Semliki Forest virus (SFV) antibodies (in brown) shows that even following intratumoral injection, virus infection is delimited by non-permissive stromal cells and the extracellular matrix (collectively called stroma). We have studied these barriers in detail previously [25].
Figure 2
Figure 2
Schematic illustration of some physical barriers to oncolytic viruses and ways to overcome them. Tumor nests are often surrounded by extracellular matrix (ECM), which prevents viruses from reaching the tumor cells (see also Figure 1). Another problem is that tight junctions hide virus receptors and limit diffusion of viruses into the tumor tissue. Newly developed tight junction openers [40,47,48] may facilitate virus infection by exposing the hidden receptors, and virus-encoded proteases may degrade the stromal shield surrounding tumor nests [26].
Figure 3
Figure 3
Restricted infection by oncolytic virus in the absence of physical barriers. Intracranial syngeneic Balb/c mouse DBT gliomas (T) were injected into the same stereotactic coordinates with high-dose oncolytic Semliki Forest virus (SFV) vector VA7. Brains were sampled and stained for SFV antigens 24 h post virus injection (in brown), showing that SFV predominantly infects normal brain parenchymal cells rather than glioma cells. DBT tumors are homogeneous and void of thick extracellular matrix deposits, as seen in Figure 1, arguing that tumor cells resist virus infection by other intracellular means [60].

Similar articles

Cited by

References

    1. Kalluri R., Zeisberg M. Fibroblasts in cancer. Nat. Rev. Cancer. 2006;6:392–401. - PubMed
    1. Polanska U.M., Orimo A. Carcinoma-associated fibroblasts: Non-neoplastic tumour-promoting mesenchymal cells. J. Cell. Physiol. 2013;228:1651–1657. doi: 10.1002/jcp.24347. - DOI - PubMed
    1. Gritsenko P.G., Ilina O., Friedl P. Interstitial guidance of cancer invasion. J. Pathol. 2012;226:185–199. doi: 10.1002/path.3031. - DOI - PubMed
    1. Adams R.H., Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 2007;8:464–478. doi: 10.1038/nrm2183. - DOI - PubMed
    1. Pickup M., Novitskiy S., Moses H.L. The roles of TGFβ in the tumour microenvironment. Nat. Rev. Cancer. 2013;13:788–799. doi: 10.1038/nrc3603. - DOI - PMC - PubMed