Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988;5(4):275-87.
doi: 10.1089/neu.1988.5.275.

Combined pretrauma scopolamine and phencyclidine attenuate posttraumatic increased sensitivity to delayed secondary ischemia

Affiliations

Combined pretrauma scopolamine and phencyclidine attenuate posttraumatic increased sensitivity to delayed secondary ischemia

L W Jenkins et al. J Neurotrauma. 1988.

Abstract

Fasted Wistar rats were given a mild level of traumatic brain injury (TBI) and then subjected to 6 min of transient forebrain ischemia 24 h posttrauma. One group was given simultaneous 1 mg/kg scopolamine and 4 mg/kg phencyclidine intraperitoneally (IP) 15 min before trauma and another group an equal volume of plasmalyte A solution. After 7 days of postinjury survival, placebo-treated rats demonstrated increased posttraumatic vulnerability to secondary ischemic CA1 neuronal death even 24 h after trauma. This finding confirmed that increased posttraumatic ischemic vulnerability persists for at least 24 h even following mild trauma. Combined muscarinic receptor and N-methyl-D-aspartate (NMDA) receptor coupled ion channel blockade given and present during the mild TBI statistically attenuated this enhanced secondary ischemic CA1 neuronal death and thus posttraumatic increased ischemic vulnerability. Placebo-treated rats had 335.3 +/- 93.6 CA1 neurons/10(6) microns 2 and drug-treated rats had 844.8 +/- 184.9 CA1 neurons/10(6) microns 2. This result suggests that muscarinic and/or NMDA receptor-mediated events confined to TBI and the early posttraumatic period are in part responsible for the phenomenon of increased posttraumatic ischemic vulnerability.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources