Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Sep;20(5):330-339.
doi: 10.1097/MCO.0000000000000387.

Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: phase angle and impedance ratio

Affiliations
Review

Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: phase angle and impedance ratio

Henry C Lukaski et al. Curr Opin Clin Nutr Metab Care. 2017 Sep.

Abstract

Purpose of review: Malnutrition affects prognosis in many groups of patients. Although screening tools are available to identify adults at risk for poor nutritional status, a need exists to improve the assessment of malnutrition by identifying the loss of functional tissues that can lead to frailty, compromised physical function, and increased risk of morbidity and mortality, particularly among hospitalized and ill patients and older adults. Bioimpedance analysis (BIA) offers a practical approach to identify malnutrition and prognosis by assessing whole-body cell membrane quality and depicting fluid distribution for an individual.

Recent findings: Two novel applications of BIA afford opportunities to safely, rapidly, and noninvasively assess nutritional status and prognosis. One method utilizes single-frequency phase-sensitive measurements to determine phase angle, evaluate nutritional status, and relate it to prognosis, mortality, and functional outcomes. Another approach uses the ratio of multifrequency impedance values to indicate altered fluid distribution and predict prognosis.

Summary: Use of basic BIA measurements, independent of use of regression prediction models and assumptions of constant chemical composition of the fat-free body, enables new options for practical assessment and clinical evaluation of impaired nutritional status and prognosis among hospitalized patients and elders that potentially can contribute to improved patient care and clinical outcomes. However, these novel applications have some technical and physiological limitations that should be considered.

PubMed Disclaimer