Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 15:97:16-20.
doi: 10.1016/j.bios.2017.05.026. Epub 2017 May 18.

Facile screening of potential xenoestrogens by an estrogen receptor-based reusable optical biosensor

Affiliations

Facile screening of potential xenoestrogens by an estrogen receptor-based reusable optical biosensor

Lanhua Liu et al. Biosens Bioelectron. .

Abstract

The apparent increase in hormone-induced cancers and disorders of the reproductive tract has led to a growing demand for new technologies capable of screening xenoestrogens. We reported an estrogen receptor (ER)-based reusable fiber biosensor for facile screening estrogenic compounds in environment. The bioassay is based on the competition of xenoestrogens with 17β-estradiol (E2) for binding to the recombinant receptor of human estrogen receptor α (hERα) protein, leaving E2 free to bind to fluorophore-labeled anti-E2 monoclonal antibody. Unbound anti-E2 antibody then binds to the immobilized E2-protein conjugate on the fiber surface, and is detected by fluorescence emission induced by evanescent field. As expected, the stronger estrogenic activity of xenoestrogen would result in the weaker fluorescent signal. Three estrogen-agonist compounds, diethylstilbestrol (DES), 4-n-nonylphenol (NP) and 4-n-octylphenol (OP), were chosen as a paradigm for validation of this assay. The rank order of estrogenic potency determined by this biosensor was DES>OP>NP, which were consistent with the published results in numerous studies. Moreover, the E2-protein conjugate modified optical fiber was robust enough for over 300 sensing cycles with the signal recoveries ranging from 90% to 100%. In conclusion, the biosensor is reusable, reliable, portable and amenable to on-line operation, providing a facile, efficient and economical alternative to screen potential xenoestrogens in environment.

Keywords: Estrogen receptor; Estrogenic activity; Optical biosensor; Screening system; Xenoestrogen.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms