Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 1:1668:65-71.
doi: 10.1016/j.brainres.2017.05.019. Epub 2017 May 24.

Autophagy-regulated AMPAR subunit upregulation in in vitro oxygen glucose deprivation/reoxygenation-induced hippocampal injury

Affiliations

Autophagy-regulated AMPAR subunit upregulation in in vitro oxygen glucose deprivation/reoxygenation-induced hippocampal injury

Li Bao et al. Brain Res. .

Abstract

Autophagy has been implicated to mediate experimental cerebral ischemia/reperfusion-induced neuronal death; the underlying molecular mechanisms, though, are poorly understood. In this study, we investigated the role of autophagy in regulating the expression of AMPAR subunits (GluR1, GluR2, and GluR3) in oxygen glucose deprivation/reperfusion (OGD/R)-mediated injury of hippocampal neurons. Our results showed that, OGD/R-induced hippocampal neuron injury was accompanied by accumulation of autophagosomes and autolysosomes in cytoplasm alongside a dramatic increase in expression of autophagy-related genes, LC3 and Beclin 1 and increased intracellular Ca2+ levels. Pre-treatment with autophagy inhibitor 3-methyladenine (3-MA) significantly reduced this effect. Moreover, the OGD/R-induced upregulation of mRNA and protein expressions of GluR1, GluR2, and GluR3 were also effectively reversed in cells pretreated with 3-MA. Our findings indicate that OGD/R induced the expression of GluRs by activating autophagy in in vitro cultured hippocampal neurons, which could be effectively reversed by the administration of 3-MA.

Keywords: AMPAR; Autophagy; Hippocampal neuron; Oxygen glucose deprivation; Reoxygenation.

PubMed Disclaimer

LinkOut - more resources