Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jun 7;451(1-2):59-68.
doi: 10.1016/0006-8993(88)90749-4.

The effects of delta 9-tetrahydrocannabinol on potassium-evoked release of dopamine in the rat caudate nucleus: an in vivo electrochemical and in vivo microdialysis study

Affiliations

The effects of delta 9-tetrahydrocannabinol on potassium-evoked release of dopamine in the rat caudate nucleus: an in vivo electrochemical and in vivo microdialysis study

J M Ng Cheong Ton et al. Brain Res. .

Abstract

The effect of systemically administered delta 9-tetrahydrocannabinol (THC), the psychoactive ingredient in marijuana, on the potassium-evoked release of dopamine (DA) was examined in the neostriatum of the chloral hydrate anesthetized rat. Both in vivo electrochemical and in vivo microdialysis techniques were employed. A low dose of THC (0.5 mg/kg, i.p.) increased the time course of potassium-evoked in vivo electrochemical signals corresponding to released extracellular DA. In vivo microdialysis showed an increase in potassium-evoked DA release following 0.5 and 2.0 mg/kg doses of THC. Potassium-evoked electrochemical signals corresponding to released extracellular DA were augmented in time course following i.p. administration (5.0 mg/kg) of nomifensine, a recognized and potent catecholaminergic reuptake blocker. In addition, in vivo brain microdialysis studies of nomifensine (5.0 mg/kg i.p.) on neostriatal potassium-evoked DA release showed that DA levels were augmented in magnitude over the time course of the microdialysis. Taken together, these studies indicate that THC has a potent presynaptic augmenting effect on at least the neostriatal portions of the mesotelencephalic DA system in the rat, although the possibility that this effect could be mediated transsynaptically cannot be ruled out. Given the previous extensive evidence for an involvement of portions of the mesotelencephalic DA system in mediating the reinforcing and euphorigenic properties of many classes of abused drugs, and in mediating direct electrical brain stimulation reward, we suggest that the presently demonstrated effects of THC on forebrain dopamine function may be related to marijuana's euphorigenic properties and, thus, to its abuse potential.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources