Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 1;100(6):865-884.
doi: 10.1016/j.ajhg.2017.04.014. Epub 2017 May 25.

Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits

Ioanna Tachmazidou  1 Dániel Süveges  1 Josine L Min  2 Graham R S Ritchie  3 Julia Steinberg  1 Klaudia Walter  1 Valentina Iotchkova  4 Jeremy Schwartzentruber  1 Jie Huang  5 Yasin Memari  1 Shane McCarthy  1 Andrew A Crawford  6 Cristina Bombieri  7 Massimiliano Cocca  8 Aliki-Eleni Farmaki  9 Tom R Gaunt  2 Pekka Jousilahti  10 Marjolein N Kooijman  11 Benjamin Lehne  12 Giovanni Malerba  7 Satu Männistö  10 Angela Matchan  1 Carolina Medina-Gomez  13 Sarah J Metrustry  14 Abhishek Nag  14 Ioanna Ntalla  15 Lavinia Paternoster  2 Nigel W Rayner  16 Cinzia Sala  17 William R Scott  18 Hashem A Shihab  2 Lorraine Southam  19 Beate St Pourcain  20 Michela Traglia  17 Katerina Trajanoska  13 Gialuigi Zaza  21 Weihua Zhang  18 María S Artigas  22 Narinder Bansal  23 Marianne Benn  24 Zhongsheng Chen  25 Petr Danecek  24 Wei-Yu Lin  23 Adam Locke  26 Jian'an Luan  27 Alisa K Manning  28 Antonella Mulas  29 Carlo Sidore  30 Anne Tybjaerg-Hansen  24 Anette Varbo  24 Magdalena Zoledziewska  30 Chris Finan  31 Konstantinos Hatzikotoulas  1 Audrey E Hendricks  32 John P Kemp  33 Alireza Moayyeri  34 Kalliope Panoutsopoulou  1 Michal Szpak  1 Scott G Wilson  35 Michael Boehnke  25 Francesco Cucca  29 Emanuele Di Angelantonio  36 Claudia Langenberg  27 Cecilia Lindgren  37 Mark I McCarthy  38 Andrew P Morris  39 Børge G Nordestgaard  24 Robert A Scott  27 Martin D Tobin  40 Nicholas J Wareham  27 SpiroMeta ConsortiumGoT2D ConsortiumPaul Burton  41 John C Chambers  42 George Davey Smith  2 George Dedoussis  9 Janine F Felix  11 Oscar H Franco  43 Giovanni Gambaro  44 Paolo Gasparini  45 Christopher J Hammond  14 Albert Hofman  43 Vincent W V Jaddoe  11 Marcus Kleber  46 Jaspal S Kooner  47 Markus Perola  48 Caroline Relton  2 Susan M Ring  2 Fernando Rivadeneira  13 Veikko Salomaa  10 Timothy D Spector  14 Oliver Stegle  49 Daniela Toniolo  17 André G Uitterlinden  13 arcOGEN ConsortiumUnderstanding Society Scientific GroupUK10K ConsortiumInês Barroso  50 Celia M T Greenwood  51 John R B Perry  52 Brian R Walker  53 Adam S Butterworth  36 Yali Xue  1 Richard Durbin  1 Kerrin S Small  14 Nicole Soranzo  54 Nicholas J Timpson  2 Eleftheria Zeggini  55
Affiliations

Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits

Ioanna Tachmazidou et al. Am J Hum Genet. .

Abstract

Deep sequence-based imputation can enhance the discovery power of genome-wide association studies by assessing previously unexplored variation across the common- and low-frequency spectra. We applied a hybrid whole-genome sequencing (WGS) and deep imputation approach to examine the broader allelic architecture of 12 anthropometric traits associated with height, body mass, and fat distribution in up to 267,616 individuals. We report 106 genome-wide significant signals that have not been previously identified, including 9 low-frequency variants pointing to functional candidates. Of the 106 signals, 6 are in genomic regions that have not been implicated with related traits before, 28 are independent signals at previously reported regions, and 72 represent previously reported signals for a different anthropometric trait. 71% of signals reside within genes and fine mapping resolves 23 signals to one or two likely causal variants. We confirm genetic overlap between human monogenic and polygenic anthropometric traits and find signal enrichment in cis expression QTLs in relevant tissues. Our results highlight the potential of WGS strategies to enhance biologically relevant discoveries across the frequency spectrum.

Keywords: DXA traits; UK Biobank; UK10K; anthropometry; genetic association study; imputation; next-generation whole-genome sequencing.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Heatmap of Pairwise Genetic Correlation Estimates between Anthropometric Traits Correlation estimates with their 95% confidence intervals and 5% FDR q values across all 66 possible pairs are given in Table S6. Abbreviations are as follows: BMI, body mass index; WHR, waist to hip ratio; WaistBMIadj, waist circumference adjusted for BMI; HipBMIadj, hip circumference adjusted for BMI; WHRBMIadj, waist to hip ratio adjusted for BMI; TFM, total fat mass; TLM, total lean mass; TRFM, trunk fat mass.
Figure 2
Figure 2
Enrichment of Discovery Meta-analysis Results in Mendelian Height-, Monogenic Obesity-, Syndromic Obesity-, and Mendelian Lipodystrophy-Associated Genes We used independent variants (r2 < 0.2) with MAF ≥ 0.1% (left) and after excluding previously reported loci (±500 kb) (right). Shown are Mendelian height (A and B), monogenic obesity (C and D), syndromic obesity (E and F), and Mendelian lipodystrophy (G and H). Enrichment of signal is observed if the p value (one-sided) from the binomial test of the observed versus the expected number of variants with p ≤ 10−5 in Mendelian-associated genes (as calculated by GREAT and denoted by the red dot) is less than 0.05/4.482 (5% significance level Bonferroni corrected for the effective number of independent traits; horizontal red line). Observed and expected counts, Bonferroni corrected p values, and FDR q values are given in Table S24. Abbreviations are as follows: BMI, body mass index; WHR, waist to hip ratio; WaistBMIadj, waist circumference adjusted for BMI; HipBMIadj, hip circumference adjusted for BMI; WHRBMIadj, waist to hip ratio adjusted for BMI; TFM, total fat mass; TLM, total lean mass; TRFM, trunk fat mass.
Figure 3
Figure 3
Combined Information from Fine-Mapping Methods, Functional Prediction Scores, and eQTL Analysis to Assess the Overall Evidence Supporting Functional and Causal Interpretation at Fine-Mapped Regions of Newly Identified Variants Example of fine-mapping and annotation at the ADAMTS17 (left) and SSC5D (right) loci for association with height. LocusZoom regional association plot shown in (A) and posterior probability (PP) statistics shown in (B) are from the fine-mapping methods CAVIARBF and PRFScore (only variants with PP > 0.1 in either methods are shown); genome-wide annotation of variants (GWAVA) scores; genomic evolutionary rate profiling (GERP) scores; average GERP (in a 100 bp window around each variant) scores; whether the variant is an eQTL signal; number of cell lines in which the variant overlaps with a DNase footprints (peak calls from ENCODE); number of overlapping transcriptional factor binding sites based on ENCODE and JASPAR ChIP-seq; number of cell lines in which the queried locus overlaps with a DNase hypersensitivity site (ENCODE data, peaks from Ensembl); and Variant Effect Predictor (VEP) genic annotation. Circle sizes and colors for all scores are scaled with respect to score type and numbers are plotted below each circle. Probabilities of causality from CAVIARBF and PRFScore are colored in shades of purple. GWAVA scores range between [0,1] and scores greater than 0.5 indicate functionality (colored in white for scores < 0.5 and in shades of orchid for scores > 0.5). GERP scores range between [−12.3,6.17] with scores above zero indicating constraint (colored in white for scores < 0 and in shades of orchid for scores > 0).
Figure 4
Figure 4
Power to Detect Association in the Discovery Stage, Stage 1 Effect sizes and 95% confidence intervals (absolute value of beta, expressed in standard deviation units) as a function of minor allele frequencies (MAF), based on stage 1 of this study. Newly reported variants are denoted in diamonds, and previously reported variants that reach genome-wide significance (p ≤ 5 × 10−8, two-sided) in the discovery stage are denoted in circles. The curves indicate 80% power at the genome-wide significance threshold of p ≤ 5 × 10−8, for five representative sample sizes of the discovery stage: (1) height, BMI, weight; (2) TFM, TLM; (3) TRFM; (4) waist circumference, waist circumference adjusted for BMI; (5) hip circumference, waist to hip ratio, hip circumference adjusted for BMI, waist to hip ratio adjusted for BMI. The sample size for height (blue line) had 80% power to detect associations down to 0.1% MAF for betas ≥ 0.19 standard deviations (0.36 and 0.23 for TFM [orange] and waist to hip ratio [purple], respectively; not plotted). Further power calculations for different sample sizes are given in Figure S32. Abbreviations are as follows: BMI, body mass index; WHR, waist to hip ratio; WaistBMIadj, waist circumference adjusted for BMI; HipBMIadj, hip circumference adjusted for BMI; WHRBMIadj, waist to hip ratio adjusted for BMI; TFM, total fat mass; TLM, total lean mass; TRFM, trunk fat mass.

Similar articles

  • Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation.
    Horikoshi M, Mӓgi R, van de Bunt M, Surakka I, Sarin AP, Mahajan A, Marullo L, Thorleifsson G, Hӓgg S, Hottenga JJ, Ladenvall C, Ried JS, Winkler TW, Willems SM, Pervjakova N, Esko T, Beekman M, Nelson CP, Willenborg C, Wiltshire S, Ferreira T, Fernandez J, Gaulton KJ, Steinthorsdottir V, Hamsten A, Magnusson PK, Willemsen G, Milaneschi Y, Robertson NR, Groves CJ, Bennett AJ, Lehtimӓki T, Viikari JS, Rung J, Lyssenko V, Perola M, Heid IM, Herder C, Grallert H, Müller-Nurasyid M, Roden M, Hypponen E, Isaacs A, van Leeuwen EM, Karssen LC, Mihailov E, Houwing-Duistermaat JJ, de Craen AJ, Deelen J, Havulinna AS, Blades M, Hengstenberg C, Erdmann J, Schunkert H, Kaprio J, Tobin MD, Samani NJ, Lind L, Salomaa V, Lindgren CM, Slagboom PE, Metspalu A, van Duijn CM, Eriksson JG, Peters A, Gieger C, Jula A, Groop L, Raitakari OT, Power C, Penninx BW, de Geus E, Smit JH, Boomsma DI, Pedersen NL, Ingelsson E, Thorsteinsdottir U, Stefansson K, Ripatti S, Prokopenko I, McCarthy MI, Morris AP; ENGAGE Consortium. Horikoshi M, et al. PLoS Genet. 2015 Jul 1;11(7):e1005230. doi: 10.1371/journal.pgen.1005230. eCollection 2015 Jul. PLoS Genet. 2015. PMID: 26132169 Free PMC article.
  • Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture.
    Berndt SI, Gustafsson S, Mägi R, Ganna A, Wheeler E, Feitosa MF, Justice AE, Monda KL, Croteau-Chonka DC, Day FR, Esko T, Fall T, Ferreira T, Gentilini D, Jackson AU, Luan J, Randall JC, Vedantam S, Willer CJ, Winkler TW, Wood AR, Workalemahu T, Hu YJ, Lee SH, Liang L, Lin DY, Min JL, Neale BM, Thorleifsson G, Yang J, Albrecht E, Amin N, Bragg-Gresham JL, Cadby G, den Heijer M, Eklund N, Fischer K, Goel A, Hottenga JJ, Huffman JE, Jarick I, Johansson Å, Johnson T, Kanoni S, Kleber ME, König IR, Kristiansson K, Kutalik Z, Lamina C, Lecoeur C, Li G, Mangino M, McArdle WL, Medina-Gomez C, Müller-Nurasyid M, Ngwa JS, Nolte IM, Paternoster L, Pechlivanis S, Perola M, Peters MJ, Preuss M, Rose LM, Shi J, Shungin D, Smith AV, Strawbridge RJ, Surakka I, Teumer A, Trip MD, Tyrer J, Van Vliet-Ostaptchouk JV, Vandenput L, Waite LL, Zhao JH, Absher D, Asselbergs FW, Atalay M, Attwood AP, Balmforth AJ, Basart H, Beilby J, Bonnycastle LL, Brambilla P, Bruinenberg M, Campbell H, Chasman DI, Chines PS, Collins FS, Connell JM, Cookson WO, de Faire U, de Vegt F, Dei M, Dimitriou M, Edkins S, Estrada K, Evans DM, Farrall M, Ferrario MM, Ferrières J, Franke L, Frau F, Gejman PV, Grallert H, Grönberg … See abstract for full author list ➔ Berndt SI, et al. Nat Genet. 2013 May;45(5):501-12. doi: 10.1038/ng.2606. Epub 2013 Apr 7. Nat Genet. 2013. PMID: 23563607 Free PMC article.
  • Whole-exome sequence analysis of anthropometric traits illustrates challenges in identifying effects of rare genetic variants.
    Young KL, Fisher V, Deng X, Brody JA, Graff M, Lim E, Lin BM, Xu H, Amin N, An P, Aslibekyan S, Fohner AE, Hidalgo B, Lenzini P, Kraaij R, Medina-Gomez C, Prokić I, Rivadeneira F, Sitlani C, Tao R, van Rooij J, Zhang D, Broome JG, Buth EJ, Heavner BD, Jain D, Smith AV, Barnes K, Boorgula MP, Chavan S, Darbar D, De Andrade M, Guo X, Haessler J, Irvin MR, Kalyani RR, Kardia SLR, Kooperberg C, Kim W, Mathias RA, McDonald ML, Mitchell BD, Peyser PA, Regan EA, Redline S, Reiner AP, Rich SS, Rotter JI, Smith JA, Weiss S, Wiggins KL, Yanek LR, Arnett D, Heard-Costa NL, Leal S, Lin D, McKnight B, Province M, van Duijn CM, North KE, Cupples LA, Liu CT. Young KL, et al. HGG Adv. 2022 Nov 25;4(1):100163. doi: 10.1016/j.xhgg.2022.100163. eCollection 2023 Jan 12. HGG Adv. 2022. PMID: 36568030 Free PMC article.
  • In search of low-frequency and rare variants affecting complex traits.
    Panoutsopoulou K, Tachmazidou I, Zeggini E. Panoutsopoulou K, et al. Hum Mol Genet. 2013 Oct 15;22(R1):R16-21. doi: 10.1093/hmg/ddt376. Epub 2013 Aug 6. Hum Mol Genet. 2013. PMID: 23922232 Free PMC article. Review.
  • Underlying genetic architecture of resistance to mastitis in dairy cattle: A systematic review and gene prioritization analysis of genome-wide association studies.
    Narayana SG, de Jong E, Schenkel FS, Fonseca PAS, Chud TCS, Powell D, Wachoski-Dark G, Ronksley PE, Miglior F, Orsel K, Barkema HW. Narayana SG, et al. J Dairy Sci. 2023 Jan;106(1):323-351. doi: 10.3168/jds.2022-21923. Epub 2022 Nov 1. J Dairy Sci. 2023. PMID: 36333139

Cited by

References

    1. Haslam D.W., James W.P. Obesity. Lancet. 2005;366:1197–1209. - PubMed
    1. Barness L.A., Opitz J.M., Gilbert-Barness E. Obesity: genetic, molecular, and environmental aspects. Am. J. Med. Genet. A. 2007;143A:3016–3034. - PubMed
    1. Berrington de Gonzalez A., Hartge P., Cerhan J.R., Flint A.J., Hannan L., MacInnis R.J., Moore S.C., Tobias G.S., Anton-Culver H., Freeman L.B. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 2010;363:2211–2219. - PMC - PubMed
    1. Locke A.E., Kahali B., Berndt S.I., Justice A.E., Pers T.H., Day F.R., Powell C., Vedantam S., Buchkovich M.L., Yang J., LifeLines Cohort Study. ADIPOGen Consortium. AGEN-BMI Working Group. CARDIOGRAMplusC4D Consortium. CKDGen Consortium. GLGC. ICBP. MAGIC Investigators. MuTHER Consortium. MIGen Consortium. PAGE Consortium. ReproGen Consortium. GENIE Consortium. International Endogene Consortium Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. - PMC - PubMed
    1. Shungin D., Winkler T.W., Croteau-Chonka D.C., Ferreira T., Locke A.E., Mägi R., Strawbridge R.J., Pers T.H., Fischer K., Justice A.E., ADIPOGen Consortium. CARDIOGRAMplusC4D Consortium. CKDGen Consortium. GEFOS Consortium. GENIE Consortium. GLGC. ICBP. International Endogene Consortium. LifeLines Cohort Study. MAGIC Investigators. MuTHER Consortium. PAGE Consortium. ReproGen Consortium New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518:187–196. - PMC - PubMed

Grants and funding