Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017:230:53-68.
doi: 10.1016/bs.pbr.2016.12.009. Epub 2017 Feb 6.

Reprogramming of somatic cells: iPS and iN cells

Affiliations

Reprogramming of somatic cells: iPS and iN cells

Vania Broccoli. Prog Brain Res. 2017.

Abstract

Limited access to human neurons has posed a significant barrier to progress in biological and preclinical studies of the human nervous system. The advent of cell reprogramming technologies has widely disclosed unprecedented opportunities to generate renewable sources of human neural cells for disease modeling, drug discovery, and cell therapeutics. Both somatic reprogramming into induced pluripotent stem cells (iPSCs) and directly induced Neurons (iNeurons) rely on transcription factor-based cellular conversion processes. Nevertheless, they rely on very distinct mechanisms, biological barriers, technical limitations, different levels of efficiency, and generate neural cells with distinctive properties. Human iPSCs represent a long-term renewable source of neural cells, but over time genomic aberrations might erode the quality of the cultures and the in vitro differentiation process requires extensive time. Conversely, direct neuronal reprogramming ensures a fast and straightforward generation of iNeurons endowed with functional properties. However, in this last case, conversion efficiency is reduced when starting from adult human cells, and the molecular and functional fidelity of iNeurons with respect to their corresponding native neuronal subtype is yet to be fully ascertained in many cases. For any biomedical research application, it should be carefully pondered the reprogramming method to use for generating reprogrammed human neuronal subtypes that best fit with the following analysis considering the existing limitations and gap of knowledge still present in this young field of investigation.

Keywords: CRISPR/Cas9; Cell therapy; Direct cell reprogramming; Disease modeling; Genome editing; Pharmacological reprogramming; Pluripotent stem cells; iNeuronal cells; iNeurons; iPSCs.

PubMed Disclaimer

Substances

LinkOut - more resources