Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Sep;40(5):893-913.
doi: 10.1111/j.1558-5646.1986.tb00560.x.

THE EVOLUTION OF PHENOTYPIC PLASTICITY IN LIFE-HISTORY TRAITS: PREDICTIONS OF REACTION NORMS FOR AGE AND SIZE AT MATURITY

Affiliations

THE EVOLUTION OF PHENOTYPIC PLASTICITY IN LIFE-HISTORY TRAITS: PREDICTIONS OF REACTION NORMS FOR AGE AND SIZE AT MATURITY

Stephen C Stearns et al. Evolution. 1986 Sep.

Abstract

We used life-history theory to predict reaction norms for age and size at maturation. We assumed that fecundity increases with size and that juvenile mortality rates of offspring decrease as ages-at-maturity of parents increase, then calculated the reaction norm by varying growth rate and calculating an optimal age at maturity for each growth rate. The reaction norm for maturation should take one of at least four shapes that depend on specific relations between changes in growth rates and changes in adult mortality rates, juvenile mortality rates, or both. Most organisms should mature neither at a fixed size nor at a fixed age, but along an age-size trajectory. The model makes possible a clear distinction between the genetic and phenotypic components of variation. The evolved response to selection is reflected in the shape and position of the reaction norm. The phenotypic response of a single organism to rapid or slow growth is defined by the location of its maturation event as a point on the reaction norm. A quantitative test with data from 19 populations and species of fish showed that predictions were in good agreement with observations (r = 0.93, P < 0.0001). The predictions of the model also agreed qualitatively with observed phenotypic variation in age and size at maturity in humans, platyfish, fruit flies, and red deer. This preliminary success suggests that experiments designed to test the predictions directly will be worthwhile.

PubMed Disclaimer

LinkOut - more resources