Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 21;9(24):21048-21058.
doi: 10.1021/acsami.7b06358. Epub 2017 Jun 7.

Self-Assembled TEMPO Cellulose Nanofibers: Graphene Oxide-Based Biohybrids for Water Purification

Affiliations
Free article

Self-Assembled TEMPO Cellulose Nanofibers: Graphene Oxide-Based Biohybrids for Water Purification

Chuantao Zhu et al. ACS Appl Mater Interfaces. .
Free article

Abstract

Nanocellulose, graphene oxide (GO), and their combinations there off have attracted great attention for the application of water purification recently because of their unique adsorption capacity, mechanical characteristics, coordination with transition metal ions, surface charge density, and so on. In the current study, (2,2,6,6-tetramethylpiperidine-1-oxylradical) (TEMPO)-mediated oxidized cellulose nanofibers (TOCNF) and GO sheets or graphene oxide nanocolloid (nanoGO) biohybrids were prepared by vacuum filtration method to obtain self-assembled adsorbents and membranes for water purification. The porous biohybrid structure, studied using advanced microscopy techniques, revealed a unique networking and self-assembling of TOCNF, GO, and nanoGO, driven by the morphology of the GO phase and stabilized by the intermolecular H-bonding between carboxyl groups and hydroxyl groups. The biohybrids exhibited a promising adsorption capacity toward Cu(II) due to TOCNF and formed a unique "arrested state" in water because of ionic cross-linking between adsorbed Cu(II) and the negatively charged TOCNF and GO phase. The mechanical performance of the freestanding biohybrid membranes investigated using PeakForce Quantative NanoMechanics characterization confirmed the enhanced modulus of the hybrid membrane compared to that of the TOCNF membrane. Besides, the TOCNF+nanoGO membrane shows unique hydrolytic stability and recyclability even under several cycles of adsorption and desorption and strong sonication. This study shows that TOCNF and nanoGO hybrids can generate new water-cleaning membranes with synergistic properties because of their high adsorption capacity, flexibility, hydrolytic stability, and mechanical robustness.

Keywords: PF-QNM; TEMPO cellulose nanofibers; biohybrid; graphene oxide nanocolloids; water purification.

PubMed Disclaimer

LinkOut - more resources