Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 30;17(1):371.
doi: 10.1186/s12879-017-2471-0.

Pneumonia caused by extensive drug-resistant Acinetobacter baumannii among hospitalized patients: genetic relationships, risk factors and mortality

Affiliations

Pneumonia caused by extensive drug-resistant Acinetobacter baumannii among hospitalized patients: genetic relationships, risk factors and mortality

Yu Jun Li et al. BMC Infect Dis. .

Abstract

Background: The clonal spread of multiple drug-resistant Acinetobacter baumannii is an emerging problem in China. We analysed the molecular epidemiology of Acinetobacter baumanni isolates at three teaching hospitals and investigated the risk factors, clinical features, and outcomes of hospital-acquired pneumonia caused by extensive drug-resistant Acinetobacter baumannii (XDRAB) infection in Guangzhou, China.

Methods: Fifty-two A. baumannii isolates were collected. Multilocus sequence typing (MLST) was used to assess the genetic relationships among the isolates. The bla OXA-51-like gene was amplified using polymerase chain reaction (PCR) and sequencing. The resistance phenotypes were determined using the disc diffusion method. A retrospective case-control study was performed to determine factors associated with XDRAB pneumonia.

Results: Most of the 52 A. baumannii isolates (N = 37, 71.2%) were collected from intensive care units (ICUs). The respiratory system was the most common bodily site from which A. baumannii was recovered (N = 45, 86.5%). Disc diffusion classified the isolates into 17 multidrug-resistant (MDR) and 35 extensively drug-resistant (XDR) strains. MLST grouped the A. baumannii isolates into 5 existing sequence types (STs) and 7 new STs. ST195 and ST208 accounted for 69.2% (36/52) of the isolates. The clonal relationship analysis showed that ST195 and ST208 belonged to clonal complex (CC) 92. According to the sequence-based typing (SBT) of the bla OXA-51-like gene, 51 A. baumannii isolates carried OXA-66 and the rest carried OXA-199. There were no significant differences with respect to the resistance phenotype between the CC92 and non-CC92 strains (P = 0.767). The multivariate analysis showed that the APACHE II score, chronic obstructive pulmonary disease (COPD) and cardiac disease were independent risk factors for XDRAB pneumonia (P < 0.05). The mortality rate of XDRAB pneumonia was high (up to 42.8%), but pneumonia caused by XDRAB was not associated with in-hospital mortality (P = 0.582).

Conclusions: ST195 may be the most common ST in Guangzhou, China, and may serve as a severe epidemic marker. SBT of bla OXA-51-like gene variants may not result in sufficient dissimilarities to type isolates in a small-scale, geographically restricted study of a single region. XDRAB pneumonia was strongly related to systemic illnesses and the APACHE II score but was not associated with in-hospital mortality.

Keywords: Acinetobacter baumannii; Extensive drug resistance; Multilocus sequence typing; Pneumonia; bla OXA-51-like gene.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Population snapshot of A. baumannii in this study and other existing isolates in China. Population snapshot of A. baumannii in this study and existing isolates in China based on the data contained in the Pubmlst database as of 27 April 2013 [5, 18] represented by an eBURST algorithm. Circles represent STs, and their sizes correspond to the numbers of isolates. The red circle represents the founder ST (ST92). The broken line indicates clonal complex (CC) 92. The ST labels are coloured as follows: black, STs found only in the Pubmlst database; green, STs found only in this study; and purple, STs found in both the Pubmlst database and this study. ST254, STn3, STn4, STn6 and STn7 were the singletons in this study

References

    1. Ying J, Lu J, Zong L, Li A, Pan R, Cheng C, et al. Molecular epidemiology and characterization of genotypes of Acinetobacter baumannii isolates from regions of South China. Jpn J Infect Dis. 2016;69:180–5. doi: 10.7883/yoken.JJID.2014.544. - DOI - PubMed
    1. El-Shazly S, Dashti A, Vali L, Bolaris M, Ibrahim AS. Molecular epidemiology and characterization of multiple drug-resistant (MDR) clinical isolates of Acinetobacter baumannii. Int J Infect Dis. 2015;41:42–9. doi: 10.1016/j.ijid.2015.10.016. - DOI - PMC - PubMed
    1. Hu FP, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC, et al. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005–2014. Clin Microbiol Infect. 2016;22(Suppl 1):S9–14. doi: 10.1016/j.cmi.2016.01.001. - DOI - PubMed
    1. Doi Y, Husain S, Potoski BA, McCurry KR, Paterson DL. Extensively drug-resistant Acinetobacter baumannii. Emerg Infect Dis. 2009;15:980–2. doi: 10.3201/eid1506.081006. - DOI - PMC - PubMed
    1. Li YJ, Pan CZ, Zhao ZW, Zhao ZX, Chen HL, Lu WB. Effects of a combination of amlodipine and imipenem on 42 clinical isolates of Acinetobacter baumannii obtained from a teaching hospital in Guangzhou, China. BMC Infect Dis. 2013;13:548. - PMC - PubMed

MeSH terms

Substances

LinkOut - more resources