Optical Method to Quantify Mechanical Contraction and Calcium Transients of Human Pluripotent Stem Cell-Derived Cardiomyocytes
- PMID: 28562232
- PMCID: PMC5568175
- DOI: 10.1089/ten.TEC.2017.0190
Optical Method to Quantify Mechanical Contraction and Calcium Transients of Human Pluripotent Stem Cell-Derived Cardiomyocytes
Abstract
Differentiation of human pluripotent stem cells into cardiomyocytes (hPS-CMs) holds promise for myocardial regeneration therapies, drug discovery, and models of cardiac disease. Potential cardiotoxicities may affect hPS-CM mechanical contraction independent of calcium signaling. Herein, a method using an image capture system is described to measure hPS-CM contractility and intracellular calcium concurrently, with high spatial and temporal resolution. The image capture system rapidly alternates between brightfield and epifluorescent illumination of contracting cells. Mechanical contraction is quantified by a speckle tracking algorithm applied to brightfield image pairs, whereas calcium transients are measured by a fluorescent calcium reporter. This technique captured changes in contractile strain, calcium transients, and beat frequency of hPS-CMs over 21 days in culture, as well as acute responses to isoproterenol and Cytochalasin D. The technique described above can be applied without the need to alter the culture platform, allowing for determination of hPS-CM behavior over weeks in culture for drug discovery and myocardial regeneration applications.
Keywords: calcium transients; drug testing; high-speed imaging; mechanical contraction; pluripotent stem cell-derived cardiomyocytes.
Conflict of interest statement
No competing financial interests exist.
Figures






Similar articles
-
Single-Cell Mechanical Analysis of Human Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Testing and Pathophysiological Studies.Stem Cell Reports. 2020 Sep 8;15(3):587-596. doi: 10.1016/j.stemcr.2020.07.006. Epub 2020 Aug 6. Stem Cell Reports. 2020. PMID: 32763158 Free PMC article.
-
Matrigel Mattress: A Method for the Generation of Single Contracting Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes.Circ Res. 2015 Dec 4;117(12):995-1000. doi: 10.1161/CIRCRESAHA.115.307580. Epub 2015 Oct 1. Circ Res. 2015. PMID: 26429802 Free PMC article.
-
Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing.Biosens Bioelectron. 2016 Nov 15;85:751-757. doi: 10.1016/j.bios.2016.05.073. Epub 2016 May 28. Biosens Bioelectron. 2016. PMID: 27266660
-
Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes.Stem Cells. 2013 May;31(5):829-37. doi: 10.1002/stem.1331. Stem Cells. 2013. PMID: 23355363 Free PMC article. Review.
-
Calcium signaling in human stem cell-derived cardiomyocytes: Evidence from normal subjects and CPVT afflicted patients.Cell Calcium. 2016 Mar;59(2-3):98-107. doi: 10.1016/j.ceca.2015.12.002. Epub 2015 Dec 15. Cell Calcium. 2016. PMID: 26725479 Free PMC article. Review.
Cited by
-
Flexible 3D printed microwires and 3D microelectrodes for heart-on-a-chip engineering.Biofabrication. 2023 Jun 22;15(3):035023. doi: 10.1088/1758-5090/acd8f4. Biofabrication. 2023. PMID: 37230083 Free PMC article.
-
Creation of a contractile biomaterial from a decellularized spinach leaf without ECM protein coating: An in vitro study.J Biomed Mater Res A. 2020 Oct;108(10):2123-2132. doi: 10.1002/jbm.a.36971. Epub 2020 May 5. J Biomed Mater Res A. 2020. PMID: 32323417 Free PMC article.
-
Cardiomyocyte mechanodynamics under conditions of actin remodelling.Philos Trans R Soc Lond B Biol Sci. 2019 Nov 25;374(1786):20190081. doi: 10.1098/rstb.2019.0081. Epub 2019 Oct 7. Philos Trans R Soc Lond B Biol Sci. 2019. PMID: 31587648 Free PMC article.
-
Noninvasive Quantification of Contractile Dynamics in Cardiac Cells, Spheroids, and Organs-on-a-Chip Using High-Frequency Ultrasound.ACS Nano. 2024 Jan 9;18(1):314-327. doi: 10.1021/acsnano.3c06325. Epub 2023 Dec 26. ACS Nano. 2024. PMID: 38147684 Free PMC article.
-
Microengineered platforms for characterizing the contractile function of in vitro cardiac models.Microsyst Nanoeng. 2022 Feb 28;8:26. doi: 10.1038/s41378-021-00344-0. eCollection 2022. Microsyst Nanoeng. 2022. PMID: 35299653 Free PMC article. Review.
References
-
- Takahashi K., and Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663, 2006 - PubMed
-
- Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., Slukvin I.I., and Thomson J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917, 2007 - PubMed
-
- Bellin M., Marchetto M.C., Gage F.H., and Mummery C.L. Induced pluripotent stem cells: the new patient? Nat Rev Mol Cell Biol 13, 713, 2012 - PubMed
-
- Soldner F., and Jaenisch R. iPSC disease modeling. Science 338, 1155, 2012 - PubMed
-
- Moretti A., Bellin M., Welling A., Jung C.B., Lam J.T., Bott-Flügel L., Dorn T., Goedel A., Höhnke C., Hofmann F., Seyfarth M., Sinnecker D., Schömig A., and Laugwitz K.-L. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363, 1397, 2010 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources