The extracellular matrix in IBD: a dynamic mediator of inflammation
- PMID: 28562487
- PMCID: PMC5562400
- DOI: 10.1097/MOG.0000000000000368
The extracellular matrix in IBD: a dynamic mediator of inflammation
Abstract
Purpose of review: The extracellular matrix (ECM) is a frequently overlooked component of the pathogenesis of inflammatory bowel disease (IBD). However, the functional and clinically significant interactions between immune as well as nonimmune cells with the ECM have important implications for disease pathogenesis. In this review, we discuss how the ECM participates in process associated with IBD that involves diverse cell types of the intestine.
Recent findings: Remodeling of the ECM is a consistent feature of IBD, and studies have implicated key ECM molecules in IBD pathogenesis. While the majority of prior studies have focused on ECM degradation by proteases, more recent studies have uncovered additional degrading enzymes, identified fragments of ECM components as potential biomarkers, and revealed that ECM synthesis is increased in IBD. These new studies support the notion that the ECM, rather than acting as a passive element, is an active participant in promoting inflammation.
Summary: New studies have offered exciting clues about the function of the ECM during IBD pathogenesis. The balance of ECM synthesis and turnover is altered in IBD, and the molecules involved exhibit discreet biological functions that regulate inflammation on the basis of specific cell type and matrix molecule.
Conflict of interest statement
The authors declare that they have no conflicts of interest with the contents of this article.
References
-
- Goffin L, Fagagnini S, Vicari A, Mamie C, Melhem H, Weder B, Lutz C, Lang S, Scharl M, Rogler G, et al. Anti-MMP-9 Antibody: A Promising Therapeutic Strategy for Treatment of Inflammatory Bowel Disease Complications with Fibrosis. Inflamm Bowel Dis. 2016;22:2041–2057. - PubMed
-
- Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med. 2005;11:1173–1179. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
