Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jan;41(1):176-188.
doi: 10.1111/j.1558-5646.1987.tb05780.x.

EVOLUTIONARY INFERENCES FROM RESTRICTION MAPS OF MITOCHONDRIAL DNA FROM NINE TAXA OF XENOPUS FROGS

Affiliations

EVOLUTIONARY INFERENCES FROM RESTRICTION MAPS OF MITOCHONDRIAL DNA FROM NINE TAXA OF XENOPUS FROGS

Steven M Carr et al. Evolution. 1987 Jan.

Abstract

Restriction endonuclease cleavage maps were prepared by the double digestion method for mitochondrial DNAs (mtDNAs) purified from Xenopus borealis, X. clivii, X. fraseri, X. muelleri, X. ruwenzoriensis, X. vestitus, X. laevis victorianus, X. l. laevis, and a variant of X. laevis designated X. laevis "davis." An average of 21 cleavage sites per genome were mapped with 11 restriction endonucleases. Among the four invariant sites found are three conserved not only among the Xenopus mtDNAs tested but also among nearly all vertebrate mtDNAs examined to date. Two of these are Sac II sites in the 12S and 16S ribosomal RNA genes, and one is a Hpa I site in the gene for asparagine transfer RNA. These three sites permit the alignment and comparison of mtDNAs from different vertebrate classes. Although most of the differences observed among the Xenopus maps are attributable to point mutations causing gain or loss of restriction sites, the maps also differ by three large length mutations in or near the displacement loop. Phylogenetic analysis of 30 informative sites suggests that those members of the laevis species-group that have 36 chromosomes per somatic cell can be divided into three subgroups: 1) X. borealis, X. clivii, and perhaps X. fraseri (the "borealis" subgroup), 2) X. muelleri, and 3) the subspecies of X, laevis. The mtDNA of the hexaploid (2n = 108) species, X. ruwenzoriensis, is most similar to that of taxa in the latter two subgroups, which contrasts with the morphological similarity of this species to X. fraseri. X. ruwenzoriensis may be an allopolyploid with a mother (the contributor of the cytoplasmic mtDNA genome) on the X. laevis or X. muelleri lineage and a father on the X. fraseri lineage. We present a model showing how mtDNA and nuclear genomes can yield contrasting phytogenies for species-groups that have undergone several rounds of interspecific hybridization. Comparison of mitochondrial and nuclear sequence divergences suggests that Xenopus mtDNA, like that of mammals and birds, evolves faster than nuclear DNA. Genetic distances among mtDNAs of Xenopus species are very large, generally approaching or exceeding one substitution per nucleotide.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources