Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Dec;51(6):1886-1895.
doi: 10.1111/j.1558-5646.1997.tb05111.x.

THE SEX-RATIO TRAIT IN DROSOPHILA SIMULANS: GEOGRAPHICAL DISTRIBUTION OF DISTORTION AND RESISTANCE

Affiliations

THE SEX-RATIO TRAIT IN DROSOPHILA SIMULANS: GEOGRAPHICAL DISTRIBUTION OF DISTORTION AND RESISTANCE

Anne Atlan et al. Evolution. 1997 Dec.

Abstract

The sex-ratio trait we describe here in Drosophila simulans results from X-linked meiotic drive. Males bearing a driving X chromosome can produce a large excess of females (about 90%) in their progeny. This is, however, rarely the case in the wild, where resistance factors, including autosomal suppressors and insensitive Y chromosomes, prevent the expression of the driver. In this study, we searched for drive and resistance factors in strains of Drosophila simulans collected all over the world. Driving X chromosomes were found in all populations whenever a good sample size was available. Their frequency may reach up to 60%. However, the presence of driving X chromosomes never results in an excess of females, due to the systematic co-occurrence of resistance factors. The highest frequencies of driving X chromosomes were observed in islands, while populations from East and Central Africa (the supposed center of origin of the species) showed the highest level of resistance. The geographical pattern of drive and resistance factors, as well as the results of crosses between strains from different geographical areas, suggest that the sex-ratio system described here has a unique and ancient origin in the species.

Keywords: Drosophila simulans; genetic conflicts; meiotic drive; sex ratio.

PubMed Disclaimer

LinkOut - more resources