Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 31;19(5):e185.
doi: 10.2196/jmir.7037.

High Level of Integration in Integrated Disease Management Leads to Higher Usage in the e-Vita Study: Self-Management of Chronic Obstructive Pulmonary Disease With Web-Based Platforms in a Parallel Cohort Design

Affiliations

High Level of Integration in Integrated Disease Management Leads to Higher Usage in the e-Vita Study: Self-Management of Chronic Obstructive Pulmonary Disease With Web-Based Platforms in a Parallel Cohort Design

Esther Pwa Talboom-Kamp et al. J Med Internet Res. .

Abstract

Background: Worldwide, nearly 3 million people die of chronic obstructive pulmonary disease (COPD) every year. Integrated disease management (IDM) improves disease-specific quality of life and exercise capacity for people with COPD, but can also reduce hospital admissions and hospital days. Self-management of COPD through eHealth interventions has shown to be an effective method to improve the quality and efficiency of IDM in several settings, but it remains unknown which factors influence usage of eHealth and change in behavior of patients.

Objective: Our study, e-Vita COPD, compares different levels of integration of Web-based self-management platforms in IDM in three primary care settings. The main aim of this study is to analyze the factors that successfully promote the use of a self-management platform for COPD patients.

Methods: The e-Vita COPD study compares three different approaches to incorporating eHealth via Web-based self-management platforms into IDM of COPD using a parallel cohort design. Three groups integrated the platforms to different levels. In groups 1 (high integration) and 2 (medium integration), randomization was performed to two levels of personal assistance for patients (high and low assistance); in group 3 there was no integration into disease management (none integration). Every visit to the e-Vita and Zorgdraad COPD Web platforms was tracked objectively by collecting log data (sessions and services). At the first log-in, patients completed a baseline questionnaire. Baseline characteristics were automatically extracted from the log files including age, gender, education level, scores on the Clinical COPD Questionnaire (CCQ), dyspnea scale (MRC), and quality of life questionnaire (EQ5D). To predict the use of the platforms, multiple linear regression analyses for the different independent variables were performed: integration in IDM (high, medium, none), personal assistance for the participants (high vs low), educational level, and self-efficacy level (General Self-Efficacy Scale [GSES]). All analyses were adjusted for age and gender.

Results: Of the 702 invited COPD patients, 215 (30.6%) registered to a platform. Of the 82 patients in group 1 (high integration IDM), 36 were in group 1A (personal assistance) and 46 in group 1B (low assistance). Of the 96 patients in group 2 (medium integration IDM), 44 were in group 2A (telephone assistance) and 52 in group 2B (low assistance). A total of 37 patients participated in group 3 (no integration IDM). In all, 107 users (49.8%) visited the platform at least once in the 15-month period. The mean number of sessions differed between the three groups (group 1: mean 10.5, SD 1.3; group 2: mean 8.8, SD 1.4; group 3: mean 3.7, SD 1.8; P=.01). The mean number of sessions differed between the high-assistance and low-assistance groups in groups 1 and 2 (high: mean 11.8, SD 1.3; low: mean 6.7, SD 1.4; F1,80=6.55, P=.01). High-assistance participants used more services (mean 45.4, SD 6.2) than low-assistance participants (mean 21.2, SD 6.8; F1,80=6.82, P=.01). No association was found between educational level and usage and between GSES and usage.

Conclusions: Use of a self-management platform is higher when participants receive adequate personal assistance about how to use the platform. Blended care, where digital health and usual care are integrated, will likely lead to increased use of the online program. Future research should provide additional insights into the preferences of different patient groups.

Trial registration: Nederlands Trial Register NTR4098; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4098 (Archived by WebCite at http://www.webcitation.org/6qO1hqiJ1).

Keywords: COPD; Web-based platform; blended care; chronically ill; eHealth; integrated disease management; primary care; self-efficacy; self-management.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: None declared.

Figures

Figure 1
Figure 1
Design of the e-Vita COPD Study. High, medium, and none refer to the level of integration of the web platform into the patient's integrated disease management program. A: high assistance; B: low assistance.
Figure 2
Figure 2
Flowchart of inclusion of participantss in the e-Vita COPD study. High, medium, and none refer to the level of integration of the web platform into the patient's integrated disease management program. A: high assistance; B: low assistance.
Figure 3
Figure 3
Flowchart of the platform users of the e-Vita COPD study. High, medium, and none refer to the level of integration of the web platform into the patient's integrated disease management program. A: high assistance; B: low assistance.
Figure 4
Figure 4
Usage patterns for high and low levels of assistance. a: mean number significantly higher in high assistance group b: adjusted for age and gender.
Figure 5
Figure 5
Usage patterns of the mean number of services per user in each group.
Figure 6
Figure 6
Attrition curve of group 1, 2 and 3.

Similar articles

Cited by

References

    1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin AA, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo J, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano J, MacIntyre MF, Mallinger L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naldi L, Narayan KM, Nasseri K, Norman P, O'Donnell M, Omer SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP, Perez-Ruiz F, Perico N, Phillips D, Pierce K, Pope CA, Porrini E, Pourmalek F, Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De León FR, Rosenfeld LC, Rushton L, Sacco RL, Salomon JA, Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh P, Yip P, Zabetian A, Zheng Z, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012 Dec 15;380(9859):2095–2128. doi: 10.1016/S0140-6736(12)61728-0. - DOI - PMC - PubMed
    1. Diaz-Guzman E, Mannino DM. Epidemiology and prevalence of chronic obstructive pulmonary disease. Clin Chest Med. 2014 Mar;35(1):7–16. doi: 10.1016/j.ccm.2013.10.002. - DOI - PubMed
    1. World Health Organization. 2015. Mar, [2015-10-17]. Chronic obstructive pulmonary disease (COPD): fact sheet http://www.who.int/mediacentre/factsheets/fs315/en/ 6lKKYMcI5
    1. Global Initiative for Chronic Obstructive Pulmonary Disease. 2016. [2016-10-17]. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease http://goldcopd.org/ 6lKKjGL5q
    1. Bellamy D, Bouchard J, Henrichsen S, Johansson G, Langhammer A, Reid J, van Weel C, Buist S. International Primary Care Respiratory Group (IPCRG) Guidelines: management of chronic obstructive pulmonary disease (COPD) Prim Care Respir J. 2006 Feb;15(1):48–57. doi: 10.1016/j.pcrj.2005.11.003. doi: 10.1016/j.pcrj.2005.11.003. - DOI - DOI - PMC - PubMed