Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov;66(11):2888-2902.
doi: 10.2337/db16-1253. Epub 2017 May 31.

An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans

Robert A Scott  1 Laura J Scott  2 Reedik Mägi  3 Letizia Marullo  4 Kyle J Gaulton  5   6 Marika Kaakinen  7 Natalia Pervjakova  3 Tune H Pers  8   9   10   11 Andrew D Johnson  12 John D Eicher  12 Anne U Jackson  2 Teresa Ferreira  5 Yeji Lee  2 Clement Ma  2 Valgerdur Steinthorsdottir  13 Gudmar Thorleifsson  13 Lu Qi  14   15   16 Natalie R Van Zuydam  5   17 Anubha Mahajan  5 Han Chen  18   19 Peter Almgren  20 Ben F Voight  21   22   23 Harald Grallert  24   25   26 Martina Müller-Nurasyid  27   28   29   30 Janina S Ried  27 Nigel W Rayner  5   31   32 Neil Robertson  5   31 Lennart C Karssen  33   34 Elisabeth M van Leeuwen  33 Sara M Willems  1   33 Christian Fuchsberger  2 Phoenix Kwan  2 Tanya M Teslovich  2 Pritam Chanda  35 Man Li  36 Yingchang Lu  37   38 Christian Dina  39 Dorothee Thuillier  40   41 Loic Yengo  40   41 Longda Jiang  7 Thomas Sparso  10 Hans A Kestler  42   43 Himanshu Chheda  44 Lewin Eisele  45 Stefan Gustafsson  46 Mattias Frånberg  47   48   49 Rona J Strawbridge  47 Rafn Benediktsson  50   51 Astradur B Hreidarsson  51 Augustine Kong  13 Gunnar Sigurðsson  51   52 Nicola D Kerrison  1 Jian'an Luan  1 Liming Liang  14   53 Thomas Meitinger  30   54   55 Michael Roden  26   56   57 Barbara Thorand  25   26 Tõnu Esko  3   8   58 Evelin Mihailov  3 Caroline Fox  59   60 Ching-Ti Liu  61 Denis Rybin  62 Bo Isomaa  63   64 Valeriya Lyssenko  20 Tiinamaija Tuomi  63   65 David J Couper  66 James S Pankow  67 Niels Grarup  10 Christian T Have  10 Marit E Jørgensen  68 Torben Jørgensen  69   70   71 Allan Linneberg  69   72   73 Marilyn C Cornelis  74 Rob M van Dam  15   75 David J Hunter  14   15   16   76 Peter Kraft  14   53   76 Qi Sun  15   16 Sarah Edkins  32 Katharine R Owen  31   77 John R B Perry  1 Andrew R Wood  78 Eleftheria Zeggini  32 Juan Tajes-Fernandes  5 Goncalo R Abecasis  2 Lori L Bonnycastle  79 Peter S Chines  79 Heather M Stringham  2 Heikki A Koistinen  80   81   82 Leena Kinnunen  80   81   82 Bengt Sennblad  47   48 Thomas W Mühleisen  83   84 Markus M Nöthen  83   84 Sonali Pechlivanis  45 Damiano Baldassarre  85   86 Karl Gertow  47 Steve E Humphries  87 Elena Tremoli  85   86 Norman Klopp  24   88 Julia Meyer  27 Gerald Steinbach  89 Roman Wennauer  90 Johan G Eriksson  63   91   92   93 Satu Mӓnnistö  91 Leena Peltonen  32   44   91   94 Emmi Tikkanen  44   95 Guillaume Charpentier  96 Elodie Eury  41 Stéphane Lobbens  41 Bruna Gigante  97 Karin Leander  97 Olga McLeod  47 Erwin P Bottinger  37 Omri Gottesman  37 Douglas Ruderfer  98 Matthias Blüher  99   100 Peter Kovacs  99   100 Anke Tonjes  99   100 Nisa M Maruthur  36   101   102 Chiara Scapoli  4 Raimund Erbel  45 Karl-Heinz Jöckel  45 Susanne Moebus  45 Ulf de Faire  97 Anders Hamsten  47 Michael Stumvoll  99   100 Panagiotis Deloukas  32   103 Peter J Donnelly  5   104 Timothy M Frayling  78 Andrew T Hattersley  105 Samuli Ripatti  32   44   95   106 Veikko Salomaa  80 Nancy L Pedersen  107 Bernhard O Boehm  108   109 Richard N Bergman  110 Francis S Collins  79 Karen L Mohlke  111 Jaakko Tuomilehto  91   112   113   114 Torben Hansen  10   115 Oluf Pedersen  10 Inês Barroso  32   116 Lars Lannfelt  117 Erik Ingelsson  46   118 Lars Lind  119 Cecilia M Lindgren  5   94 Stephane Cauchi  40 Philippe Froguel  7   40   41 Ruth J F Loos  37   38   120 Beverley Balkau  121   122 Heiner Boeing  123 Paul W Franks  124   125 Aurelio Barricarte Gurrea  126   127   128 Domenico Palli  129 Yvonne T van der Schouw  130 David Altshuler  94   131   132   133   134   135 Leif C Groop  20   44 Claudia Langenberg  1 Nicholas J Wareham  1 Eric Sijbrands  90 Cornelia M van Duijn  33   136 Jose C Florez  8   132   137 James B Meigs  8   132   138 Eric Boerwinkle  139   140 Christian Gieger  24   25 Konstantin Strauch  27   29 Andres Metspalu  3   141 Andrew D Morris  142 Colin N A Palmer  17   143 Frank B Hu  14   15   16 Unnur Thorsteinsdottir  13   50 Kari Stefansson  13   50 Josée Dupuis  59   61 Andrew P Morris  3   5   144   145 Michael Boehnke  146 Mark I McCarthy  147   31   77 Inga Prokopenko  148   7   31 DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium
Affiliations

An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans

Robert A Scott et al. Diabetes. 2017 Nov.

Abstract

To characterize type 2 diabetes (T2D)-associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel. Promising association signals were followed up in additional data sets (of 14,545 or 7,397 T2D case and 38,994 or 71,604 control subjects). We identified 13 novel T2D-associated loci (P < 5 × 10-8), including variants near the GLP2R, GIP, and HLA-DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 distinct signals at 113 loci. Despite substantially increased sample size and more complete coverage of low-frequency variation, all novel associations were driven by common single nucleotide variants. Credible sets of potentially causal variants were generally larger than those based on imputation with earlier reference panels, consistent with resolution of causal signals to common risk haplotypes. Stratification of T2D-associated loci based on T2D-related quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in pancreatic islet enhancers for loci influencing insulin secretion and in adipocytes, monocytes, and hepatocytes for insulin action-associated loci. These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The effect sizes of the established (blue diamonds, N = 69, P < 5 × 10−4) (Supplementary Material), novel (red diamonds, N = 13), and additional distinct (sky blue diamonds, N = 13) (Supplementary Table 7) signals according to their risk allele frequency (Supplementary Table 3). The additional distinct signals are based on approximate conditional analyses. The distinct signal at TP53INP1 led by rs11786613 (Supplementary Table 7) is plotted (sky blue diamond). This signal did not reach locus-wide significance but was selected for follow-up because of its low frequency and absence of LD with previously reported signal at this locus. The power curve shows the estimated effect size for which we had 80% power to detect associations. Established common variants with OR >1.12 are annotated.
Figure 2
Figure 2
A: The number (N) of SNVs included in 99% credible sets when performed on all SNVs compared with when analyses were restricted to those SNVs present in HapMap. B: The cumulative πc of the top three SNVs among all 1000G SNVs and after restriction to HapMap SNVs is shown. While the low-frequency SNV at TP53INP1 (rs11786613) did not reach the threshold for a distinct signal in approximate conditional analyses, we fine-mapped both this variant and the previous common signal separately after reciprocal conditioning, which suggested they were independent. C: The MAF of the lead SNV identified in current analyses compared with that identified among SNVs present in HapMap. D: The association of the low-frequency variant rs11786613 (blue) and that of the previous lead variant at this locus, rs7845219 (purple). The low-frequency variant overlaps regulatory annotations active in pancreatic islets, among other tissues, and the sequence surrounding the A allele of this variant has an in silico recognition motif for a FOXA1:AR (androgen receptor) protein complex.
Figure 3
Figure 3
T2D loci stratified by patterns of quantitative trait (e.g., glycemic, insulin, lipid, and anthropometric) effects show distinct cell-type annotation patterns. We hierarchically clustered loci based on endophenotype data and identified groups of T2D loci associated with measures of insulin secretion (A), insulin resistance (B), and BMI/lipids (C). We then tested the effect of variants in cell-type enhancer and promoter chromatin states on the posterior probabilities of credible sets for each group. We identified most significant effects among pancreatic (Panc.) islet chromatin for insulin secretion loci, CD14+ monocyte and adipose chromatin for insulin resistance loci, and liver chromatin for BMI/lipid loci.

Comment in

  • Give GWAS a Chance.
    Meyre D. Meyre D. Diabetes. 2017 Nov;66(11):2741-2742. doi: 10.2337/dbi17-0026. Diabetes. 2017. PMID: 29061660 No abstract available.

References

    1. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;386:743–800 - PMC - PubMed
    1. Mahajan A, Go MJ, Zhang W, et al. .; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium; Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; Mexican American Type 2 Diabetes (MAT2D) Consortium; Type 2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-Ethnic Samples (T2D-GENES) Consortium . Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 2014;46:234–244 - PMC - PubMed
    1. Voight BF, Scott LJ, Steinthorsdottir V, et al. .; MAGIC investigators; GIANT Consortium . Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010;42:579–589 - PMC - PubMed
    1. Morris AP, Voight BF, Teslovich TM, et al. .; Wellcome Trust Case Control Consortium; Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Investigators; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; Asian Genetic Epidemiology Network–Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium . Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 2012;44:981–990 - PMC - PubMed
    1. Zeggini E, Scott LJ, Saxena R, et al. .; Wellcome Trust Case Control Consortium . Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008;40:638–645 - PMC - PubMed

Grants and funding