Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Oct 1;7(10):6298-6308.
doi: 10.1039/c6sc01832g. Epub 2016 Jun 27.

Click-chemistry approaches to π-conjugated polymers for organic electronics applications

Affiliations
Review

Click-chemistry approaches to π-conjugated polymers for organic electronics applications

Assunta Marrocchi et al. Chem Sci. .

Abstract

Given the wide utility of click-chemistry reactions for the preparation of simple moieties within large architecturally complex materials, this minireview article aims at surveying papers exploring their scope in the area of π-conjugated polymers for application in organic electronics to enable advanced functional properties.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. A general representation of polymerization using Stille, Suzuki, Heck and direct arylation cross-coupling reactions.
Scheme 2
Scheme 2. Synthesis of 1,2,3-triazoles via 1,3-dipolar cycloaddition of azides and terminal alkynes.
Scheme 3
Scheme 3. Most recent CuAAC mechanism proposed by Fokin and co-workers.
Scheme 4
Scheme 4. Synthesis of “click” polymers P1–P3.
Scheme 5
Scheme 5. Synthesis of “click” polymers P4–P9.
Scheme 6
Scheme 6. Synthetic routes for the “click” polymers P10–P12.
Scheme 7
Scheme 7. Preparation of semiconducting polymer thin films via surface-initiated stepwise “click” polymerization.
Fig. 1
Fig. 1. Surface morphology imaged by contact mode AFM. (a) Topograph of the film of P13 prepared on a quartz surface (roughness, rms, ∼6 nm); (b) corresponding lateral force image. Centre area has a trench in the film made by ‘‘nanoshaving’’ to show continuity of the cylindrical domains. Reproduced with permission. Copyright 2011, The Royal Society of Chemistry.
Scheme 8
Scheme 8. Synthetic route to oligophenylenetriazoles O1 and O2. (A) CuSO4·5H2O (2 mmol%), SA (15 mmol%), EtOH/H2O (2.5 : 1), rt; (B) CuSO4·5H2O (2 mmol%), SA (15 mmol%), CH3CN/H2O (2.5 : 1), rt.
Scheme 9
Scheme 9. Synthesis of 1,4-disubstituted 1,2,3-triazoles O3 from azides 19 and corresponding terminal acetylenes.
Scheme 10
Scheme 10. Synthetic route to P14–P16. TCNE and TCNQ stand for tetracyanoethylene and 7,7,8,8-tetracyanoquinodimethane, respectively.
Fig. 2
Fig. 2. (A) Device structure and (B) representative IV curves of the devices incorporating (a) P14, (b) P15, and (c) P16 30 nm thick films [adapted from ref. 37].
Fig. 3
Fig. 3. Schematic illustration of Jørgensen and Eichen “click” approach to oligo-arylene-vinylenes. Adapted with permission. Copyright 2011, Wiley-VCH.
Fig. 4
Fig. 4. Examples of π-conjugated “click” oligo-arylene-vinylenes reported by Jørgensen et al. and Eichen et al.
Scheme 11
Scheme 11. Reaction schematics for the molecular wires O6 and O7 self-assembled on Au surface.
Scheme 12
Scheme 12. Syntheses of poly(vinylsulfide)s P17 via thiol-yne click polymerization reactions of monomers 25 and 26.
Scheme 13
Scheme 13. Synthesis of hyperbranched π-conjugated polymer P18 by catalyst-free thiol-yne reaction between monomers 25 and 27.
None
Assunta Marrocchi
None
Antonio Facchetti
None
Daniela Lanari
None
Stefano Santoro
None
Luigi Vaccaro

Similar articles

Cited by

References

    1. For recent representative reviews see:

    2. Yao Y., Dong H., Hu W. Adv. Mater. 2016;28:4513–4523. - PubMed
    3. Nielsen C. B., Holliday S., Chen H.-Y., Cryer S. J., McCulloch I. Acc. Chem. Res. 2015;48:2803–2812. - PMC - PubMed
    4. Dou L., Liu Y., Hong Z., Li G., Yang Y. Chem. Rev. 2015;115:12633–12665. - PubMed
    5. Muellen K., Pisula W. J. Am. Chem. Soc. 2015;137:9503–9505. - PubMed
    6. Yi Z., Wang S., Liu Y. Adv. Mater. 2015;27:3589–3606. - PubMed
    7. Savagatrup S., Printz A. D., O'Connor T. F., Zaretski A. V., Lipomi D. J. Chem. Mater. 2014;26:3028–3041.
    8. Benight S. J., Wang C., Tok J. B. H., Bao Z. Prog. Polym. Sci. 2013;38:1961–1977.
    9. Marrocchi A., Lanari D., Facchetti A., Vaccaro L. Energy Environ. Sci. 2012;5:8457–8474.
    1. Khikhlovskyi V., Van Bremen A. J. J., Janssen R. A. J., Gelink G. H., Kemerink M. Org. Electron. 2016;31:56–62.
    2. Nam S., Seo J., Kim H., Kim Y. Appl. Phys. Lett. 2015;107:153302.
    3. Meena J. S., Sze S. M., Chand U., Tseng T.-Y. Nanoscale Res. Lett. 2014;9:526–559. - PMC - PubMed
    4. Han S.-T., Zhou Y., Roy V. A. L. Adv. Mater. 2013;25:5425–5449. - PubMed
    1. Metal catalyzed cross-coupling reactions and more, ed. A. de Meijere, S. Braese and M. Oestreich, Wiley-VCH, Weinheim, Germany, 2014.
    1. For representative examples see:

    2. Strappaveccia G., Ismalaj E., Petrucci C., Lanari D., Marrocchi A., Drees M., Facchetti A., Vaccaro L. Green Chem. 2015;17:365–372.
    3. Osedach T. P., Andrew T. L., Bulović V. Energy Environ. Sci. 2013;6:711–718.
    4. Leong W. L., Welch G. C., Kaake L. G., Takacs C. J., Sun Y., Bazan G. C., Heeger A. J. Chem. Sci. 2012;3:2103–2109.
    1. For representative examples see:

    2. Morin P.-O., Bura T., Leclerc M. Mater. Horiz. 2016;3:11–20.
    3. Suraru S.-L., Lee J. A., Luscombe C. ACS Macro Lett. 2016;5:724–729. - PubMed
    4. Rudenko A. E., Thompson B. C. J. Polym. Sci., Part A: Polym. Chem. 2015;53:135–147.
    5. Mercier L. G., Leclerc M. Acc. Chem. Res. 2013;46:1597–1605. - PubMed
    6. Facchetti A., Marrocchi A., Vaccaro L. Angew. Chem., Int. Ed. 2012;51:3520–3523. - PubMed