Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec;3(1):22.
doi: 10.1186/s40729-017-0085-3. Epub 2017 May 31.

Cellular fluid shear stress on implant surfaces-establishment of a novel experimental set up

Affiliations

Cellular fluid shear stress on implant surfaces-establishment of a novel experimental set up

P W Kämmerer et al. Int J Implant Dent. 2017 Dec.

Abstract

Background: Mechanostimuli of different cells can affect a wide array of cellular and inter-cellular biological processes responsible for dental implant healing. The purpose of this in vitro study was to establish a new test model to create a reproducible flow-induced fluid shear stress (FSS) of osteoblast cells on implant surfaces.

Methods: As FSS effects on osteoblasts are detectable at 10 dyn/cm2, a custom-made flow chamber was created. Computer-aided verification of circulation processes was performed. In order to verify FSS effects, cells were analysed via light and fluorescence microscopy.

Results: Utilising computer-aided simulations, the underside of the upper plate was considered to have optimal conditions for cell culturing. At this site, a flow-induced orientation of osteoblast cell clusters and an altered cell morphology with cellular elongation and alteration of actin fibres in the fluid flow direction was detected.

Conclusions: FSS simulation using this novel flow chamber might mimic the peri-implant situation in the phase of loaded implant healing. With this FSS flow chamber, osteoblast cells' sensitivity to FSS was verified in the form of morphological changes and cell re-clustering towards the direction of the flow. Different shear forces can be created simultaneously in a single experiment.

Keywords: Bioengineering; Biomechanics; Cell biology; Dental implant materials; Implant healing; Osteoblast; Stress analysis.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Three-dimensional illustration (ae) and photography (f) of the experimental setup with the components marked numerical. a 1 Lower petri dish (s’ bottom serving as the lower plate); 2 Rotating glass panel [60 mm diameter (cell bearing)]; 3 Titanium axis. b 4 Liquid medium (red). c 5 Reversed upper petri dish. d 6 Gearwheel with set screw. e 7 Closing; 8 Electronic motor device and adjusting ring with additional set screw
Fig. 2
Fig. 2
Side view of a computerized simulation, showing the flow chambers’ lower compartment and the flow profile in between the two plates; shearing gap and bottom plate are shown on the left side; rotation speed = 200 rpm; colour code bar (left edge) showing shear force values [Pa] [1 Pa = 10 dyn/cm2]; flow direction presented by arrows
Fig. 3
Fig. 3
Diagram for visualisation of the calculation of shear stress rates taking into account the centrifugal force and the glass plates’ dimensions. For example, at a distance of 25 mm from the centre of the upper plate, the shear forces’ value is 8.33 dyn/cm2, together with an additional centrifugal force that has a value of 0.55 dyn/cm2
Fig. 4
Fig. 4
Randomly orientated osteoblasts without influence of rotation (phallacidin fluorescence staining). On the left side with 200× and on the right side with 400× magnification. The white X on the coloured circle marks the location upon the plate where the osteoblasts were located. The red X marks the centre of the plate
Fig. 5
Fig. 5
Osteoblasts with an orientation tendency after 24 h of rotation (phallacidin fluorescence staining). On the left side with 200× and on the right side with 400× magnification. The yellow arrows show the orientation of the cells. The red arched arrow within the coloured circle shows the direction of rotation. The dashed white line oriented to the right stands for the resulting centrifugal force. The dashed white line pointing upwards shows the direction of the resulting flow resistance. The solid white arrow stands for the vectorial sum of the abovementioned forces

Similar articles

Cited by

References

    1. Ehrlich PJ, Lanyon LE. Mechanical strain and bone cell function: a review. Osteoporos Int. 2002;13(9):688–700. doi: 10.1007/s001980200095. - DOI - PubMed
    1. Vaughan TJ, Haugh MG, Mcnamara LM. A fluid-structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems. J R Soc Interface. 2013;10(81):20120900. doi: 10.1098/rsif.2012.0900. - DOI - PMC - PubMed
    1. Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech. 1994;27(3):339–360. doi: 10.1016/0021-9290(94)90010-8. - DOI - PubMed
    1. Anderson EJ, Falls TD, Sorkin AM, Knothe Tate ML. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction. Biomed Eng Online. 2006;5:27. doi: 10.1186/1475-925X-5-27. - DOI - PMC - PubMed
    1. Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, et al. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci U S A. 2002;99(20):12600–12605. doi: 10.1073/pnas.202296599. - DOI - PMC - PubMed

LinkOut - more resources