Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr;47(2):619-631.
doi: 10.1111/j.1558-5646.1993.tb02116.x.

GENETIC VARIATION AND COVARIATION FOR CHARACTERISTICS ASSOCIATED WITH CADMIUM TOLERANCE IN NATURAL POPULATIONS OF THE SPRINGTAIL ORCHESELLA CINCTA (L.)

Affiliations

GENETIC VARIATION AND COVARIATION FOR CHARACTERISTICS ASSOCIATED WITH CADMIUM TOLERANCE IN NATURAL POPULATIONS OF THE SPRINGTAIL ORCHESELLA CINCTA (L.)

Leo Posthuma et al. Evolution. 1993 Apr.

Abstract

Heavy metals can be strong and stable directional selective agents for metal-exposed populations. Genetic variation for the metal-tolerance characteristic "cadmium excretion efficiency" was studied in populations of the collembolan Orchesella cincta from a reference- and a metal-contaminated forest soil. Previously it has been shown that "excretion efficiency" influences tolerance through midgut-mediated immobilization and excretion of toxic metal ions, and that an increased mean excretion efficiency is present in animals inhabiting metal-contaminated litter. In the present research, offspring-parent regressions showed that additive genetic variation for cadmium excretion efficiency was present in the population from the reference site. The heritability estimate was 0.33. In the natural population exposed to heavy metals from an industrial source, additive genetic variation was not significantly different from zero. Differences in the heritability between the reference and the exposed population were not significant. Genetic variation for cadmium excretion efficiency allows for a response to selection in the reference population. Such a response has probably occurred in the metal-exposed population. Half-sib analysis with animals from the reference population was used to estimate genetic variation and maternal effects for excretion efficiency, relative growth rate and molting frequency, and to determine genetic correlations between these characteristics. Additive genetic variation was demonstrated for all three characteristics, heritability estimates were 0.48, 0.75 and 0.46, respectively. Maternal effects were low for excretion efficiency and molting frequency, but may be present for relative growth rate. Phenotypic and genetic correlations among these characteristics were positive. The environmental correlation between relative growth rate and molting frequency was positive, others were negative. Direct selection for any of the characteristics, or genetic correlations between tolerance characteristics and growth characteristics, or both may have caused the responses previously observed in field populations.

Keywords: Adaptation; Collembola; Orchesella cincta; body growth; genetic correlation; genetic variation; heavy metal; tolerance.

PubMed Disclaimer

LinkOut - more resources