Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform
- PMID: 28569062
- DOI: 10.1021/acssynbio.7b00007
Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform
Abstract
Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 108 cfu·μg-1 for an average applied electric field strength of 2.25 ± 0.50 kV·mm-1. Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.
Keywords: digital microfluidics; droplet; electroporation; transformation.
Similar articles
-
Transformation of Escherichia coli with foreign DNA by electroporation.Chin J Biotechnol. 1993;9(3):197-201. Chin J Biotechnol. 1993. PMID: 8049351
-
Automated electrotransformation of Escherichia coli on a digital microfluidic platform using bioactivated magnetic beads.Biomicrofluidics. 2017 Feb 3;11(1):014110. doi: 10.1063/1.4975391. eCollection 2017 Jan. Biomicrofluidics. 2017. PMID: 28191268 Free PMC article.
-
A Versatile Microfluidic Device for Automating Synthetic Biology.ACS Synth Biol. 2015 Oct 16;4(10):1151-64. doi: 10.1021/acssynbio.5b00062. Epub 2015 Jun 15. ACS Synth Biol. 2015. PMID: 26075958
-
Current Advances and Future Prospects of Bulk and Microfluidic-Enabled Electroporation Systems.Biotechnol Bioeng. 2025 Jun;122(6):1347-1365. doi: 10.1002/bit.28965. Epub 2025 Mar 5. Biotechnol Bioeng. 2025. PMID: 40042165 Review.
-
Single-cell electroporation.Curr Opin Biotechnol. 2003 Feb;14(1):29-34. doi: 10.1016/s0958-1669(02)00003-4. Curr Opin Biotechnol. 2003. PMID: 12565999 Review.
Cited by
-
Microfluidic and Nanofluidic Intracellular Delivery.Adv Sci (Weinh). 2021 Aug;8(15):e2004595. doi: 10.1002/advs.202004595. Epub 2021 Jun 6. Adv Sci (Weinh). 2021. PMID: 34096197 Free PMC article. Review.
-
Recent Advances in Microscale Electroporation.Chem Rev. 2022 Jul 13;122(13):11247-11286. doi: 10.1021/acs.chemrev.1c00677. Epub 2022 Jun 23. Chem Rev. 2022. PMID: 35737882 Free PMC article. Review.
-
Recombineering and MAGE.Nat Rev Methods Primers. 2021;1:7. doi: 10.1038/s43586-020-00006-x. Epub 2021 Jan 14. Nat Rev Methods Primers. 2021. PMID: 35540496 Free PMC article.
-
Lab-on-Chip Platform for Culturing and Dynamic Evaluation of Cells Development.Micromachines (Basel). 2020 Feb 14;11(2):196. doi: 10.3390/mi11020196. Micromachines (Basel). 2020. PMID: 32074950 Free PMC article.
-
Digital Microfluidics for Sample Preparation in Low-Input Proteomics.Small Methods. 2025 Jan;9(1):e2400495. doi: 10.1002/smtd.202400495. Epub 2024 Aug 29. Small Methods. 2025. PMID: 39205538 Free PMC article. Review.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous