Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 1;58(7):2832-2842.
doi: 10.1167/iovs.16-20312.

Cellular Senescence Is Associated With Human Retinal Microaneurysm Formation During Aging

Affiliations

Cellular Senescence Is Associated With Human Retinal Microaneurysm Formation During Aging

Mariana López-Luppo et al. Invest Ophthalmol Vis Sci. .

Abstract

Purpose: Microaneurysms are present in healthy old-age human retinas. However, to date, no age-related pathogenic mechanism has been implicated in their formation. Here, cellular senescence, a hallmark of aging and several age-related diseases, has been analyzed in the old-age human retina and in the retina of a progeric mouse.

Methods: Retinas were obtained from 17 nondiabetic donors and from mice deficient in Bmi1. Cellular senescence was analyzed by immunohistochemistry, senescent-associated β-galactosidase activity assay, Sudan black B staining, conventional transmission electron microscopy, and immunoelectronmicroscopy.

Results: Neurons, but not neuroglia, and blood vessels undergo cellular senescence in the old-age human retina. The canonical senescence markers p16, p53, and p21 were up-regulated and coexisted with apoptosis in old-age human microaneurysms. Senescent endothelial cells were discontinuously covered by fibronectin, and p16 colocalized with the β1 subunit of fibronectin receptor α5β1 integrin under the endothelial cellular membrane, suggesting anoikis as a mechanism involved in endothelial cell apoptosis. In a progeric mouse model deficient in Bmi1, where p21 was overexpressed, the retinal blood vessels displayed an aging phenotype characterized by enlarged caveolae and lipofuscin accumulation. Although mouse retina is not prone to develop microaneurysms, Bmi1-deficient mice presented abundant retinal microaneurysms.

Conclusions: Together, these results uncover cellular senescence as a player during the formation of microaneurysms in old-age human retinas.

PubMed Disclaimer

Publication types

LinkOut - more resources