From iPSC towards cardiac tissue-a road under construction
- PMID: 28573409
- PMCID: PMC5590027
- DOI: 10.1007/s00424-017-2003-1
From iPSC towards cardiac tissue-a road under construction
Abstract
The possibility to generate induced pluripotent stem cells (iPSC) opens the way to generate virtually all cell types of our human body. In combination with modern gene editing techniques like CRISPR/CAS, a new set of powerful tools becomes available for life science. Scientific fields like genotype and cell type-specific pharmacology, disease modeling, stem cell biology, and developmental biology have been dramatically fostered and their faces have been changed. However, as golden as the age of iPSC-derived cells and their manipulation has started, the shine begins to tarnish. Researchers face more and more practical problems intrinsic to the system. These problems are related to the specific culturing conditions which are not yet sufficient to mimic the natural environment of native stem cells differentiating towards adult cells. However, researchers work hard to uncover these factors. Here, we review a common standard approach to generate iPSCs and transduce these to iPSC cardiomyocytes. Further, we review recent achievements and discuss their current limitations and future perspectives. We are on track, but the road is still under construction.
Keywords: Cardiac differentiation; Induced pluripotent stem cell; Long QT syndrome; Myocyte physiology; Signaling pathway.
Figures






References
-
- Bellin M, Casini S, Davis RP, D’Aniello C, Haas J, Ward-van Oostwaard D, Tertoolen LGJ, Jung CB, Elliott DA, Welling A, Laugwitz KL, Moretti A, Mummery CL. Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO J. 2013;32:3161–3175. doi: 10.1038/emboj.2013.240. - DOI - PMC - PubMed
-
- Ben-Ari M, Schick R, Barad L, Novak A, Ben-Ari E, Lorber A, Itskovitz-Eldor J, Rosen MR, Weissman A, Binah O. From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects. Heart Rhythm. 2014;11:1808–1818. doi: 10.1016/j.hrthm.2014.05.037. - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources