Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep:228:484-495.
doi: 10.1016/j.envpol.2017.03.060. Epub 2017 May 30.

New insights into urine-based assessment of polycyclic aromatic hydrocarbon-exposure from a rat model: Identification of relevant metabolites and influence of elimination kinetics

Affiliations

New insights into urine-based assessment of polycyclic aromatic hydrocarbon-exposure from a rat model: Identification of relevant metabolites and influence of elimination kinetics

N Grova et al. Environ Pollut. 2017 Sep.

Abstract

A gas chromatography tandem mass-spectrometry method dedicated to the analysis of 50 metabolites of polycyclic aromatic hydrocarbons (OH-PAHs) was applied to urine specimens collected from female Long Evans rats under controlled exposure to a mixture of PAHs (at 7 doses ranging from 0.01 to 0.8 mg/kg, by gavage, 3 times per week for 90 days). On four occasions (day 1, 28, 60 and 90), urine samples were collected over a 24 h period. Among these 50 OH-PAHs, 41 were detected in urine samples. Seven additional OH-PAHs were identified for the first time: 1 corresponding to metabolite of pyrene and 3 of anthracene. Strong linear dose versus urinary concentration relationships were observed for 25 of the 41 OH-PAHs detected in rat urine, confirming their suitability for assessing exposure to their respective parent compound. In addition, some isomers (e.g. 1-OH-pyrene, 3-OH-/4-OH-chrysene, 10-OH-benz[a]anthracene, 8-OH-benzo[k]fluoranthene, 11-OH-benzo[b]fluoranthene and 3-OH-benzo[a]pyrene) that were detected starting from the lowest levels of exposure or even in controls were considered particularly relevant biomarkers compared to metabolites only detected at higher levels of exposure. Finally, on the basis of the excretion profiles (on days 1, 28, 60 and 90) and urinary elimination kinetics of each OH-PAH detected at days 1 and 60, this study highlighted the fact that sampling time may influence the measurement of metabolites in urine. Taken together, these results provide interesting information on the suitability of the analysis of OH-PAHs in urine for the assessment of PAH exposure, which could be taken into consideration for the design of epidemiological studies in the future.

Keywords: Biomonitoring; Metabolites; Polycyclic aromatic hydrocarbons; Rat; Toxicokinetics; Urine.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources