Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Oct:229:69-86.
doi: 10.1016/j.envpol.2017.04.101. Epub 2017 May 31.

Elemental mercury: Its unique properties affect its behavior and fate in the environment

Affiliations
Review

Elemental mercury: Its unique properties affect its behavior and fate in the environment

Hansell Gonzalez-Raymat et al. Environ Pollut. 2017 Oct.

Abstract

Elemental mercury (Hg0) has different behavior in the environment compared to other pollutants due to its unique properties. It can remain in the atmosphere for long periods of time and so can travel long distances. Through air-surface (e.g., vegetation or ocean) exchange (dry deposition), Hg0 can enter terrestrial and aquatic systems where it can be converted into other Hg species. Despite being ubiquitous and playing a key role in Hg biogeochemical cycling, Hg0 behavior in the environment is not well understood. The objective of this review is to provide a better understanding of how the unique physicochemical properties of Hg0 affects its cycling and chemical transformations in different environmental compartments. The first part focuses on the fundamental chemistry of Hg0, addressing why Hg0 is liquid at room temperature and the formation of amalgam, Hg halide, and Hg chalcogenides. The following sections discuss the long-range transport of Hg0 as well as its redistribution in the atmosphere, aquatic and terrestrial systems, in particular, on the sorption/desorption processes that occur in each environmental compartment as well as the involvement of Hg0 in chemical transformation processes driven by photochemical, abiotic, and biotic reactions.

Keywords: Biogeochemical cycling; Elemental mercury; Unique properties.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources