Kilonovae
- PMID: 28579916
- PMCID: PMC5434174
- DOI: 10.1007/s41114-017-0006-z
Kilonovae
Abstract
The mergers of double neutron star (NS-NS) and black hole (BH)-NS binaries are promising gravitational wave (GW) sources for Advanced LIGO and future GW detectors. The neutron-rich ejecta from such merger events undergoes rapid neutron capture (r-process) nucleosynthesis, enriching our Galaxy with rare heavy elements like gold and platinum. The radioactive decay of these unstable nuclei also powers a rapidly evolving, supernova-like transient known as a "kilonova" (also known as "macronova"). Kilonovae are an approximately isotropic electromagnetic counterpart to the GW signal, which also provides a unique and direct probe of an important, if not dominant, r-process site. I review the history and physics of kilonovae, leading to the current paradigm of week-long emission with a spectral peak at near-infrared wavelengths. Using a simple light curve model to illustrate the basic physics, I introduce potentially important variations on this canonical picture, including: [Formula: see text]day-long optical ("blue") emission from lanthanide-free components of the ejecta; [Formula: see text]hour-long precursor UV/blue emission, powered by the decay of free neutrons in the outermost ejecta layers; and enhanced emission due to energy input from a long-lived central engine, such as an accreting BH or millisecond magnetar. I assess the prospects of kilonova detection following future GW detections of NS-NS/BH-NS mergers in light of the recent follow-up campaign of the LIGO binary BH-BH mergers.
Keywords: Black holes; Gravitational waves; Neutron stars; Nucleosynthesis; Radiative transfer.
Figures













Similar articles
-
Kilonovae.Living Rev Relativ. 2020;23(1):1. doi: 10.1007/s41114-019-0024-0. Epub 2019 Dec 16. Living Rev Relativ. 2020. PMID: 31885490 Free PMC article. Review.
-
A kilonova as the electromagnetic counterpart to a gravitational-wave source.Nature. 2017 Nov 2;551(7678):75-79. doi: 10.1038/nature24303. Epub 2017 Oct 16. Nature. 2017. PMID: 29094693
-
Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event.Nature. 2017 Nov 2;551(7678):80-84. doi: 10.1038/nature24453. Epub 2017 Oct 16. Nature. 2017. PMID: 29094687
-
Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger.Nature. 2017 Nov 2;551(7678):67-70. doi: 10.1038/nature24298. Epub 2017 Oct 16. Nature. 2017. PMID: 29094694
-
Electromagnetic follow-up of gravitational waves: review and lessons learned.Philos Trans A Math Phys Eng Sci. 2025 Apr 10;383(2294):20240126. doi: 10.1098/rsta.2024.0126. Epub 2025 Apr 10. Philos Trans A Math Phys Eng Sci. 2025. PMID: 40205861 Free PMC article. Review.
Cited by
-
PIC methods in astrophysics: simulations of relativistic jets and kinetic physics in astrophysical systems.Living Rev Comput Astrophys. 2021;7(1):1. doi: 10.1007/s41115-021-00012-0. Epub 2021 Jul 8. Living Rev Comput Astrophys. 2021. PMID: 34722863 Free PMC article. Review.
-
Kilonovae.Living Rev Relativ. 2020;23(1):1. doi: 10.1007/s41114-019-0024-0. Epub 2019 Dec 16. Living Rev Relativ. 2020. PMID: 31885490 Free PMC article. Review.
-
Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA.Living Rev Relativ. 2018;21(1):3. doi: 10.1007/s41114-018-0012-9. Epub 2018 Apr 26. Living Rev Relativ. 2018. PMID: 29725242 Free PMC article. Review.
-
A Field-Theory Approach for Modeling Dissipative Relativistic Fluids.Entropy (Basel). 2024 Jul 24;26(8):621. doi: 10.3390/e26080621. Entropy (Basel). 2024. PMID: 39202091 Free PMC article.
-
High-energy astrophysics and the search for sources of gravitational waves.Philos Trans A Math Phys Eng Sci. 2018 May 28;376(2120):20170294. doi: 10.1098/rsta.2017.0294. Philos Trans A Math Phys Eng Sci. 2018. PMID: 29661981 Free PMC article.
References
-
- Abadie J, et al. Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class Quantum Gravity. 2010;27(173):001.
-
- Abbott BP, et al. Binary black hole mergers in the first advanced LIGO observing run. Phys Rev X. 2016;6(4):041015.
-
- Abbott BP, et al. Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys J Lett. 2016;826:L13. doi: 10.3847/2041-8205/826/1/L13. - DOI
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous