Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 1;8(5):3618-3622.
doi: 10.1039/c6sc05533h. Epub 2017 Feb 27.

Mild, visible light-mediated decarboxylation of aryl carboxylic acids to access aryl radicals

Affiliations

Mild, visible light-mediated decarboxylation of aryl carboxylic acids to access aryl radicals

L Candish et al. Chem Sci. .

Abstract

Herein we present the first example of aryl radical formation via the visible light-mediated decarboxylation of aryl carboxylic acids using photoredox catalysis. This method constitutes a mild protocol for the decarboxylation of cheap and abundant aryl carboxylic acids and tolerates both electron-rich substrates and those lacking ortho-substitution. The in situ formation of an acyl hypobromite is proposed to prevent unproductive hydrogen atom abstraction and trapping of the intermediate aroyloxy radical, enabling mild decarboxylation.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Challenges of photoredox-catalysed decarboxylation of aryl carboxylic acids and this approach to achieve a mild decarboxylation protocol.
Chart 1
Chart 1. Screen of different bromination reagents. General reaction conditions: reactions were performed using 4a (0.1 mmol), PC (3 mol%), Cs2CO3 (2 equiv.), [Br] (3.5 equiv.), arene (2.2 mL), blue LED (λ max = 455 nm), 55 °C, 22 h. Yields determined by GC-MS using decane as standard.
Scheme 2
Scheme 2. Scope of the biaryl synthesis. General reactions conditions; benzoic acid (0.2 mmol), PC (3 mol%), Cs2CO3 (2 equiv.), 5 (3.5 equiv.), arene (4.5 mL), blue LED (λ max = 455 nm), 55 °C, 22 h. Isolated yields (average of two reactions) following column chromatography. aReactions were performed with arene (150 equiv.) in CH3CN (1 : 1 v/v). bReactions were performed on 1.5 mmol scale, reaction time = 60 h. cReactions were performed with blue LED (λ max = 415 nm) at 80 °C. d2 equiv. 5 used. eReactions were performed using 23 W CFL. fRatio of isomers determined by GC-MS. gRatio of isomers determined by 19F NMR spectroscopic analysis of the crude mixture.
Scheme 3
Scheme 3. Proposed reaction mechanism. Counterions and ligand sphere of Ir are omitted for clarity.
Scheme 4
Scheme 4. (a) Trapping of the intermediate aroyloxy radical; (b) comparison of selectivities for biaryl formation, ratio determined by 19F NMR spectroscopic analysis; (c) visible light-mediated decarboxylation of 4a at elevated temperatures.

References

    1. . For recent reviews on the visible light-promoted decarboxylation of alkyl carboxylic acids see;

    2. Liu J., Liu Q., Yi H., Qin C., Bai R., Qi X., Lan Y., Lei A. Angew. Chem., Int. Ed. 2014;53:502. - PubMed
    3. Miyake Y., Nakajima K., Nishibayashi Y. Chem. Commun. 2013;49:7854. - PubMed
    4. Zuo Z., MacMillan D. W. C. J. Am. Chem. Soc. 2014;136:5257. - PMC - PubMed
    5. Xuan J., Zhang Z.-G., Xiao W.-J. Angew. Chem., Int. Ed. 2015;54:15632. - PubMed
    6. Huang H., Jia K., Chen Y. ACS Catal. 2016;6:4983.
    7. Griffin J. D., Zeller M. A., Nicewicz D. A. J. Am. Chem. Soc. 2015;137:11340. - PMC - PubMed
    8. Candish L., Pitzer L., Gómez-Suárez A., Glorius F. Chem.–Eur. J. 2016;22:4753. - PubMed
    9. Candish L., Standley E. A., Gómez-Suárez A., Mukherjee S., Glorius F. Chem.–Eur. J. 2016;22:9971. - PubMed
    10. Millet A., Lefebvre Q., Rueping M. Chem.–Eur. J. 2016;22:13464. - PubMed
    1. For selected reviews on visible light photoredox catalysis, see:

    2. Zeitler K. Angew. Chem., Int. Ed. 2009;48:9785. - PubMed
    3. Narayanam J. M. R., Stephenson C. R. J. Chem. Soc. Rev. 2011;40:102. - PubMed
    4. Tucker J. W., Stephenson C. R. J. J. Org. Chem. 2012;77:1617. - PubMed
    5. Xuan J., Xiao W.-J. Angew. Chem., Int. Ed. 2012;51:6828. - PubMed
    6. Shi L., Xia W. Chem. Soc. Rev. 2012;41:7687. - PubMed
    7. Fukuzumi S., Ohkubo K. Chem. Sci. 2013;4:561.
    8. Hari D. P., König B. Angew. Chem., Int. Ed. 2013;52:4734. - PubMed
    9. Xi Y., Yi H., Lei A. Org. Biomol. Chem. 2013;11:2387. - PubMed
    10. Prier C. K., Rankic D. A., MacMillan D. W. C. Chem. Rev. 2013;113:5322. - PMC - PubMed
    11. Xuan J., Lu L.-Q., Chen J.-R., Xiao W.-J. Eur. J. Org. Chem. 2013:6755.
    12. Reckenthäler M., Griesbeck A. G. Adv. Synth. Catal. 2013;355:2727.
    13. Hopkinson M. N., Sahoo B., Li J.-L., Glorius F. Chem.–Eur. J. 2014;20:3874. - PubMed
    14. Koike T., Akita M. Top. Catal. 2014;57:967.
    15. Nicewicz D. A., Nguyen T. M. ACS Catal. 2014;4:355.
    16. Meggers E. Chem. Commun. 2015;51:3290. - PubMed
    17. Romero N. A., Nicewicz D. A. Chem. Rev. 2016;116:10075. - PubMed
    18. Skubi K. L., Blum T. R., Yoon T. P. Chem. Rev. 2016;116:10035. - PMC - PubMed
    1. Ghosh I., Marzo L., Das A., Shaikh R., König B. Acc. Chem. Res. 2016;49:1566. - PubMed
    1. Yasu Y., Koike T., Akita M. Adv. Synth. Catal. 2012;354:3414.
    1. Seiple I. B., Su S., Rodriguez R. A., Gianatassio R., Fujiwara Y., Sobel A. L., Baran P. S. J. Am. Chem. Soc. 2010;132:13194. - PMC - PubMed
    2. Barton D. H. R., Ramesh M. Tetrahedron Lett. 1990;31:949.
    3. Barton D. H. R., Lacher B., Zard S. Z. Tetrahedron. 1987;43:4321.