Electronic properties of the boroxine-gold interface: evidence of ultra-fast charge delocalization
- PMID: 28580111
- PMCID: PMC5436552
- DOI: 10.1039/c6sc05632f
Electronic properties of the boroxine-gold interface: evidence of ultra-fast charge delocalization
Abstract
We performed a combined experimental and theoretical study of the assembly of phenylboronic acid on the Au(111) surface, which is found to lead to the formation of triphenylboroxines by spontaneous condensation of trimers of molecules. The interface between the boroxine group and the gold surface has been characterized in terms of its electronic properties, revealing the existence of an ultra-fast charge delocalization channel in the proximity of the oxygen atoms of the heterocyclic group. More specifically, the DFT calculations show the presence of an unoccupied electronic state localized on both the oxygen atoms of the adsorbed triphenylboroxine and the gold atoms of the topmost layer. By means of resonant Auger electron spectroscopy, we demonstrate that this interface state represents an ultra-fast charge delocalization channel. Boroxine groups are among the most widely adopted building blocks in the synthesis of covalent organic frameworks on surfaces. Our findings indicate that such systems, typically employed as templates for the growth of organic films, can also act as active interlayers that provide an efficient electronic transport channel bridging the inorganic substrate and organic overlayer.
Figures





Similar articles
-
Computational NEXAFS Characterization of Molecular Model Systems for 2D Boroxine Frameworks.Nanomaterials (Basel). 2022 May 9;12(9):1610. doi: 10.3390/nano12091610. Nanomaterials (Basel). 2022. PMID: 35564319 Free PMC article.
-
Oxygen-Promoted on-Surface Synthesis of Polyboroxine Molecules.Chemistry. 2024 Aug 22;30(47):e202401565. doi: 10.1002/chem.202401565. Epub 2024 Jul 30. Chemistry. 2024. PMID: 38864572
-
Revealing the Local Electronic Structure of a Single-Layer Covalent Organic Framework through Electronic Decoupling.Nano Lett. 2020 Feb 12;20(2):963-970. doi: 10.1021/acs.nanolett.9b03998. Epub 2020 Jan 15. Nano Lett. 2020. PMID: 31910625
-
The chemistry of the sulfur-gold interface: in search of a unified model.Acc Chem Res. 2012 Aug 21;45(8):1183-92. doi: 10.1021/ar200260p. Epub 2012 Mar 23. Acc Chem Res. 2012. PMID: 22444437 Review.
-
Interfacially formed organized planar inorganic, polymeric and composite nanostructures.Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):79-116. doi: 10.1016/j.cis.2004.07.005. Adv Colloid Interface Sci. 2004. PMID: 15571664 Review.
Cited by
-
Accurate Vertical Excitation Energies of BODIPY/Aza-BODIPY Derivatives from Excited-State Mean-Field Calculations.J Phys Chem A. 2022 Oct 13;126(40):7137-7146. doi: 10.1021/acs.jpca.2c04473. Epub 2022 Sep 29. J Phys Chem A. 2022. PMID: 36173265 Free PMC article.
-
Improvements in structural and optical properties of wafer-scale hexagonal boron nitride film by post-growth annealing.Sci Rep. 2019 Jul 22;9(1):10590. doi: 10.1038/s41598-019-47093-9. Sci Rep. 2019. PMID: 31332250 Free PMC article.
-
Clarifying the Adsorption of Triphenylamine on Au(111): Filling the HOMO-LUMO Gap.J Phys Chem C Nanomater Interfaces. 2022 Jan 27;126(3):1635-1643. doi: 10.1021/acs.jpcc.1c08877. Epub 2022 Jan 17. J Phys Chem C Nanomater Interfaces. 2022. PMID: 35116088 Free PMC article.
-
On-Surface Bottom-Up Synthesis of Azine Derivatives Displaying Strong Acceptor Behavior.Angew Chem Int Ed Engl. 2018 Jul 9;57(28):8582-8586. doi: 10.1002/anie.201804110. Epub 2018 Jun 21. Angew Chem Int Ed Engl. 2018. PMID: 29931817 Free PMC article.
-
Computational NEXAFS Characterization of Molecular Model Systems for 2D Boroxine Frameworks.Nanomaterials (Basel). 2022 May 9;12(9):1610. doi: 10.3390/nano12091610. Nanomaterials (Basel). 2022. PMID: 35564319 Free PMC article.
References
-
- Hall D. G., Boronic Acids. Preparation and Applications in Organic Synthesis and Medicine, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2006.
-
- Nishiyabu R., Kubo Y., James T. D., Fossey J. S. Chem. Commun. 2011;47:1124–1150. - PubMed
-
- Kubo Y., Nishiyabu R., James T. D. Chem. Commun. 2014;51:2005–2020. - PubMed
-
- Feng X., Ding X., Jiang D. Chem. Soc. Rev. 2012;41:6010. - PubMed
-
- Waller P. J., Gándara F., Yaghi O. M. Acc. Chem. Res. 2015;48:3053–3063. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources