Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Mar 28;312(13):823-7.
doi: 10.1056/NEJM198503283121304.

Catecholamine modulation of rapid potassium shifts during exercise

Catecholamine modulation of rapid potassium shifts during exercise

M E Williams et al. N Engl J Med. .

Abstract

Plasma potassium rises during muscular exercise and falls rapidly when exercise is stopped. Since the sympathoadrenal system is stimulated with exertion and both alpha- and beta-adrenergic agonists affect internal potassium homeostasis, we studied the influence of catecholamines on potassium shifts during and after exercise. Six healthy subjects were given maximal exercise stress tests under three conditions: with no medication (control), during beta-blockade with propranolol, and during alpha-blockade with phentolamine. Compared with a peak rise in plasma potassium of 1.23 +/- 0.27 mmol per liter (mean +/- S.E.M.) during the control study, propranolol caused a rise of 1.89 +/- 0.35 (P less than 0.01) and a sustained elevation during recovery. Phentolamine diminished the rise of potassium (0.70 +/- 0.21 mmol per liter; P less than 0.01) and lowered the potassium level throughout recovery. These effects of catecholamines were independent of the venous pH, the plasma bicarbonate and serum glucose levels, and urinary potassium excretion, and they did not appear to be due to insulin. High norepinephrine and epinephrine levels confirmed the release of catecholamines capable of stimulating alpha- and beta-receptors. Exercise work did not differ among the groups. beta-Adrenergic receptors appear to moderate the acute hyperkalemia of exercise, whereas alpha-adrenergic receptors act to enhance hyperkalemia and may protect against hypokalemia when exertion ceases.

PubMed Disclaimer

Publication types

LinkOut - more resources