Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jul 1;57(1):18-32.
doi: 10.1093/icb/icx017.

Glowing Worms: Biological, Chemical, and Functional Diversity of Bioluminescent Annelids

Affiliations
Review

Glowing Worms: Biological, Chemical, and Functional Diversity of Bioluminescent Annelids

Aida Verdes et al. Integr Comp Biol. .

Abstract

Bioluminescence, the ability to produce light by living organisms, has evolved independently in numerous lineages across the tree of life. Luminous forms are found in a wide range of taxonomic groups from bacteria to vertebrates, although the great majority of bioluminescent organisms are marine taxa. Within the phylum Annelida, bioluminescence is widespread, present in at least 98 terrestrial and marine species that represent 45 genera distributed in thirteen lineages of clitellates and polychaetes. The ecological diversity of luminous annelids is unparalleled, with species occupying a great variety of habitats including both terrestrial and marine ecosystems, from coastal waters to the deep-sea, in benthic and pelagic habitats from polar to tropical regions. This great taxonomic and ecological diversity is matched by the wide array of bioluminescent colors-including yellow light, which is very rare among marine taxa-different emission wavelengths even between species of the same genus, and varying patterns, chemical reactions and kinetics. This diversity of bioluminescence colors and patterns suggests that light production in annelids might be involved in a variety of different functions, including defensive mechanisms like sacrificial lures or aposematic signals, and intraspecific communication systems. In this review, we explore the world of luminous annelids, particularly focusing on the current knowledge regarding their taxonomic and ecological diversity and discussing the putative functions and chemistries of their bioluminescent systems.

PubMed Disclaimer

LinkOut - more resources