Cellular uptake of nanoparticles: journey inside the cell
- PMID: 28585944
- PMCID: PMC5593313
- DOI: 10.1039/c6cs00636a
Cellular uptake of nanoparticles: journey inside the cell
Abstract
Nanoscale materials are increasingly found in consumer goods, electronics, and pharmaceuticals. While these particles interact with the body in myriad ways, their beneficial and/or deleterious effects ultimately arise from interactions at the cellular and subcellular level. Nanoparticles (NPs) can modulate cell fate, induce or prevent mutations, initiate cell-cell communication, and modulate cell structure in a manner dictated largely by phenomena at the nano-bio interface. Recent advances in chemical synthesis have yielded new nanoscale materials with precisely defined biochemical features, and emerging analytical techniques have shed light on nuanced and context-dependent nano-bio interactions within cells. In this review, we provide an objective and comprehensive account of our current understanding of the cellular uptake of NPs and the underlying parameters controlling the nano-cellular interactions, along with the available analytical techniques to follow and track these processes.
Conflict of interest statement
O.C.F. declares financial interests in Selecta Biosciences, Tarveda Therapeutics and Placon Therapeutics.
Figures












Similar articles
-
Nano-Cell Interactions of Non-Cationic Bionanomaterials.Acc Chem Res. 2019 Jun 18;52(6):1519-1530. doi: 10.1021/acs.accounts.9b00103. Epub 2019 May 6. Acc Chem Res. 2019. PMID: 31058496
-
The Nano-Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions.Acc Chem Res. 2019 Jun 18;52(6):1507-1518. doi: 10.1021/acs.accounts.9b00126. Epub 2019 May 31. Acc Chem Res. 2019. PMID: 31149804
-
Chemically Designed Nanoscale Materials for Controlling Cellular Processes.Acc Chem Res. 2021 Jul 20;54(14):2916-2927. doi: 10.1021/acs.accounts.1c00215. Epub 2021 Jul 7. Acc Chem Res. 2021. PMID: 34232016
-
Nanotoxicology: advances and pitfalls in research methodology.Nanomedicine (Lond). 2015;10(18):2931-52. doi: 10.2217/nnm.15.130. Epub 2015 Sep 15. Nanomedicine (Lond). 2015. PMID: 26370561 Review.
-
In-vitro in-vivo correlation (IVIVC) in nanomedicine: Is protein corona the missing link?Biotechnol Adv. 2017 Nov 15;35(7):889-904. doi: 10.1016/j.biotechadv.2017.08.003. Epub 2017 Aug 26. Biotechnol Adv. 2017. PMID: 28844973 Review.
Cited by
-
Investigating the impact of 2-OHOA-embedded liposomes on biophysical properties of cancer cell membranes via Laurdan two-photon microscopy imaging.Sci Rep. 2024 Jul 9;14(1):15831. doi: 10.1038/s41598-024-65812-9. Sci Rep. 2024. PMID: 38982188 Free PMC article.
-
Comparison of nanovesicles derived from Panax notoginseng at different size: physical properties, composition, and bioactivity.Front Pharmacol. 2024 Jul 22;15:1423115. doi: 10.3389/fphar.2024.1423115. eCollection 2024. Front Pharmacol. 2024. PMID: 39104384 Free PMC article.
-
Biodegradable Covalently Crosslinked Poly[N-(2-Hydroxypropyl) Methacrylamide] Nanogels: Preparation and Physicochemical Properties.Polymers (Basel). 2024 Jan 17;16(2):263. doi: 10.3390/polym16020263. Polymers (Basel). 2024. PMID: 38257062 Free PMC article.
-
Encapsulation of Hydrophobic Drugs in Shell-by-Shell Coated Nanoparticles for Radio-and Chemotherapy-An In Vitro Study.Bioengineering (Basel). 2020 Oct 12;7(4):126. doi: 10.3390/bioengineering7040126. Bioengineering (Basel). 2020. PMID: 33053776 Free PMC article.
-
Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery.J Nanobiotechnology. 2022 Aug 31;20(1):395. doi: 10.1186/s12951-022-01605-4. J Nanobiotechnology. 2022. PMID: 36045386 Free PMC article. Review.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources