Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 22:9:152.
doi: 10.3389/fnagi.2017.00152. eCollection 2017.

Age-Related Differences in Dynamic Interactions Among Default Mode, Frontoparietal Control, and Dorsal Attention Networks during Resting-State and Interference Resolution

Affiliations

Age-Related Differences in Dynamic Interactions Among Default Mode, Frontoparietal Control, and Dorsal Attention Networks during Resting-State and Interference Resolution

Bárbara Avelar-Pereira et al. Front Aging Neurosci. .

Abstract

Resting-state fMRI (rs-fMRI) can identify large-scale brain networks, including the default mode (DMN), frontoparietal control (FPN) and dorsal attention (DAN) networks. Interactions among these networks are critical for supporting complex cognitive functions, yet the way in which they are modulated across states is not well understood. Moreover, it remains unclear whether these interactions are similarly affected in aging regardless of cognitive state. In this study, we investigated age-related differences in functional interactions among the DMN, FPN and DAN during rest and the Multi-Source Interference task (MSIT). Networks were identified using independent component analysis (ICA), and functional connectivity was measured during rest and task. We found that the FPN was more coupled with the DMN during rest and with the DAN during the MSIT. The degree of FPN-DMN connectivity was lower in older compared to younger adults, whereas no age-related differences were observed in FPN-DAN connectivity in either state. This suggests that dynamic interactions of the FPN are stable across cognitive states. The DMN and DAN were anti correlated and age-sensitive during the MSIT only, indicating variation in a task-dependent manner. Increased levels of anticorrelation from rest to task also predicted successful interference resolution. Additional analyses revealed that the degree of DMN-DAN anticorrelation during the MSIT was associated to resting cerebral blood flow (CBF) within the DMN. This suggests that reduced DMN neural activity during rest underlies an impaired ability to achieve higher levels of anticorrelation during a task. Taken together, our results suggest that only parts of age-related differences in connectivity are uncovered at rest and thus, should be studied in the functional connectome across multiple states for a more comprehensive picture.

Keywords: brain networks; functional connectivity; interactions; interference resolution; resting-state.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Multi-Source Interference task (MSIT; Bush et al., 2003). In each trial, participants were asked to indicate the number that was different by pressing the spatially corresponding key on the button pad.
Figure 2
Figure 2
Networks correlation matrix during resting-state (upper-case diagonal) and interference resolution (lower-case diagonal) for (A) young and (B) old.
Figure 3
Figure 3
(A) Maps of the default mode (DMN; red), bilateral frontoparietal control (FPN; yellow), and dorsal attention (DAN; blue), and (B) overlap among the three networks.
Figure 4
Figure 4
Functional connectivity among the DMN, FPN and DAN during rest and the MSIT for the younger group. Connectivity between the FPN and DMN significantly decreased from rest to task, whereas the opposite trend can be seen for coupling between the FPN and DAN. The DMN and DAN were significantly more anticorrelated during task performance than during rest. *p < 0.05; **p < 0.001.
Figure 5
Figure 5
Functional connectivity among the DMN, FPN and DAN during rest and the MSIT for younger and older adults. The young had higher FPN-DMN connectivity than the old in both conditions. However, both groups showed a decrease in inter-network functional connectivity during the MSIT when compared to rest. Both groups also showed an increase in right FPN (rFPN)-DAN connectivity during the MSIT compared to rest, but there were no differences between young and old. Although there were also no differences between the groups in lFPN-DAN connectivity during rest, the old showed increased connectivity during the MSIT, whereas the young group retained similar levels of (negative) connectivity. DMN-DAN connectivity levels did not significantly differ between the age groups at rest, but the young showed increased negative connectivity during the MSIT, whereas the old did not. *p < 0.05; **p < 0.001.
Figure 6
Figure 6
The relation between DMN and DAN coupling and MSIT accuracy. The graph shows the residuals of the change-change age-partialed correlation between DMN-DAN connectivity (rest—task) and accuracy during the MSIT (correct responses for control items—correct responses for interference items).
Figure 7
Figure 7
Control analysis on functional connectivity levels among the DMN, FPN and DAN during rest and the MSIT for younger and older adults. Connectivity between the rFPN and DMN decreased for both groups from rest to task. The younger also had higher connectivity between the lFPN and DMN during the MSIT when compared to rest, whereas the old showed no connectivity differences between states. Importantly, there were no differences in rFPN-DMN connectivity between groups during both states, whereas connectivity between the lFPN and DMN was higher for young during both rest and task. Hence, despite exhibiting seemingly opposite effects, the same trend is still observed—an age-related difference that is present during one state is also present during the other and vice-versa. In line with our previous findings, both groups showed an increase in rFPN-DAN connectivity during the MSIT compared to rest, and there were no differences between groups. Young also showed negative connectivity between the lFPN and DAN, with no significant difference between rest and task, whereas the old group’s connectivity increased during the MSIT. This is also consistent with our previous results, where young and old similarly increased rFPN-DAN connectivity during the MSIT, but there were no age-related differences in either state. The same trends are also present for the lFPN and DAN, indicating that the young did not change their connectivity levels from one state to the other, whereas the older group did. Finally, both groups had negative connectivity between the DMN and DAN, but the young showed increased anticorrelation during the task while older subjects did not. Importantly, the correlation between DMN-DAN connectivity changes and MSIT performance remained after regressing out motion (r = −0.408, p = 0.003). *p < 0.05; **p < 0.001.

References

    1. Allen E. A., Erhardt E. B., Damaraju E., Gruner W., Segall J. M., Silva R. F., et al. . (2011). A baseline for the multivariate comparison of resting-state networks. Front. Syst. Neurosci. 5:2. 10.3389/fnsys.2011.00002 - DOI - PMC - PubMed
    1. Allen E. A., Damaraju E., Plis S. M., Erhardt E. B., Eichele T., Calhoun V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24, 663–676. 10.1093/cercor/bhs352 - DOI - PMC - PubMed
    1. Andrews-Hanna J. R., Snyder A. Z., Vincent J. L., Lustig C., Head D., Raichle M. E., et al. . (2007). Disruption of large-scale brain systems in advanced aging. Neuron 56, 924–935. 10.1016/j.neuron.2007.10.038 - DOI - PMC - PubMed
    1. Andrews-Hanna J. R., Reidler J. S., Sepulcre J., Poulin R., Buckner R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron 65, 550–562. 10.1016/j.neuron.2010.02.005 - DOI - PMC - PubMed
    1. Ashburner J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113. 10.1016/j.neuroimage.2007.07.007 - DOI - PubMed

LinkOut - more resources