Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 27;11(6):5646-5659.
doi: 10.1021/acsnano.7b01062. Epub 2017 Jun 7.

Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy

Affiliations

Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy

Yaobin Wu et al. ACS Nano. .

Abstract

Mimicking the anisotropic cardiac structure and guiding 3D cellular orientation play a critical role in designing scaffolds for cardiac tissue regeneration. Significant advances have been achieved to control cellular alignment and elongation, but it remains an ongoing challenge for engineering 3D cardiac anisotropy using these approaches. Here, we present a 3D hybrid scaffold based on aligned conductive nanofiber yarns network (NFYs-NET, composition: polycaprolactone, silk fibroin, and carbon nanotubes) within a hydrogel shell for mimicking the native cardiac tissue structure, and further demonstrate their great potential for engineering 3D cardiac anisotropy for cardiac tissue engineering. The NFYs-NET structures are shown to control cellular orientation and enhance cardiomyocytes (CMs) maturation. 3D hybrid scaffolds were then fabricated by encapsulating NFYs-NET layers within hydrogel shell, and these 3D scaffolds performed the ability to promote aligned and elongated CMs maturation on each layer and individually control cellular orientation on different layers in a 3D environment. Furthermore, endothelialized myocardium was constructed by using this hybrid strategy via the coculture of CMs on NFYs-NET layer and endothelial cells within hydrogel shell. Therefore, these 3D hybrid scaffolds, containing NFYs-NET layer inducing cellular orientation, maturation, and anisotropy and hydrogel shell providing a suitable 3D environment for endothelialization, has great potential in engineering 3D cardiac anisotropy.

Keywords: 3D cellular alignment; cardiac anisotropy; cardiomyocyte; endothelialization; hydrogel shell; nanofiber yarns network.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources