Functional consequences of neuropeptide and small-molecule co-transmission
- PMID: 28592905
- PMCID: PMC5547741
- DOI: 10.1038/nrn.2017.56
Functional consequences of neuropeptide and small-molecule co-transmission
Abstract
Colocalization of small-molecule and neuropeptide transmitters is common throughout the nervous system of all animals. The resulting co-transmission, which provides conjoint ionotropic ('classical') and metabotropic ('modulatory') actions, includes neuropeptide- specific aspects that are qualitatively different from those that result from metabotropic actions of small-molecule transmitter release. Here, we focus on the flexibility afforded to microcircuits by such co-transmission, using examples from various nervous systems. Insights from such studies indicate that co-transmission mediated even by a single neuron can configure microcircuit activity via an array of contributing mechanisms, operating on multiple timescales, to enhance both behavioural flexibility and robustness.
Conflict of interest statement
The authors declare no competing interests.
Figures






Similar articles
-
The roles of co-transmission in neural network modulation.Trends Neurosci. 2001 Mar;24(3):146-54. doi: 10.1016/s0166-2236(00)01723-9. Trends Neurosci. 2001. PMID: 11182454 Review.
-
General Principles of Neuronal Co-transmission: Insights From Multiple Model Systems.Front Neural Circuits. 2019 Jan 21;12:117. doi: 10.3389/fncir.2018.00117. eCollection 2018. Front Neural Circuits. 2019. PMID: 30728768 Free PMC article. Review.
-
Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system.Cell Mol Life Sci. 2022 Aug 23;79(9):492. doi: 10.1007/s00018-022-04451-7. Cell Mol Life Sci. 2022. PMID: 35997826 Free PMC article. Review.
-
Neurotransmitter segregation: functional and plastic implications.Prog Neurobiol. 2012 Jun;97(3):277-87. doi: 10.1016/j.pneurobio.2012.04.004. Epub 2012 Apr 16. Prog Neurobiol. 2012. PMID: 22531669 Review.
-
Regulating peptidergic modulation of rhythmically active neural circuits.Brain Behav Evol. 2002;60(6):378-87. doi: 10.1159/000067791. Brain Behav Evol. 2002. PMID: 12563170
Cited by
-
CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond.Physiol Rev. 2023 Apr 1;103(2):1565-1644. doi: 10.1152/physrev.00059.2021. Epub 2022 Dec 1. Physiol Rev. 2023. PMID: 36454715 Free PMC article. Review.
-
Extrasynaptic Communication.Front Mol Neurosci. 2021 Apr 30;14:638858. doi: 10.3389/fnmol.2021.638858. eCollection 2021. Front Mol Neurosci. 2021. PMID: 33994942 Free PMC article.
-
Identifying roles for peptidergic signaling in mice.Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):20169-20179. doi: 10.1073/pnas.1910495116. Epub 2019 Aug 27. Proc Natl Acad Sci U S A. 2019. PMID: 31455734 Free PMC article.
-
Glycinergic neurotransmission in the rostral ventrolateral medulla controls the time course of baroreflex-mediated sympathoinhibition.J Physiol. 2019 Jan;597(1):283-301. doi: 10.1113/JP276467. Epub 2018 Nov 22. J Physiol. 2019. PMID: 30312491 Free PMC article.
-
Cellular diversity and developmental hierarchy in the planarian nervous system.Curr Opin Genet Dev. 2022 Oct;76:101960. doi: 10.1016/j.gde.2022.101960. Epub 2022 Jul 22. Curr Opin Genet Dev. 2022. PMID: 35878572 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources